| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( x = y -> ( x ^ ( P - 1 ) ) = ( y ^ ( P - 1 ) ) ) | 
						
							| 2 |  | oveq2 |  |-  ( j = k -> ( x - j ) = ( x - k ) ) | 
						
							| 3 | 2 | oveq1d |  |-  ( j = k -> ( ( x - j ) ^ P ) = ( ( x - k ) ^ P ) ) | 
						
							| 4 | 3 | cbvprodv |  |-  prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) = prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) | 
						
							| 5 |  | oveq1 |  |-  ( x = y -> ( x - k ) = ( y - k ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( x = y -> ( ( x - k ) ^ P ) = ( ( y - k ) ^ P ) ) | 
						
							| 7 | 6 | prodeq2ad |  |-  ( x = y -> prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) = prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) | 
						
							| 8 | 4 7 | eqtrid |  |-  ( x = y -> prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) = prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) | 
						
							| 9 | 1 8 | oveq12d |  |-  ( x = y -> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) = ( ( y ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) ) | 
						
							| 10 | 9 | cbvmptv |  |-  ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) ) |