| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etranslemdvnf2lemlem.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | etransclem29.a | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | etransclem29.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 4 |  | etransclem29.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 |  | etransclem29.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 6 |  | etransclem29.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 7 |  | etransclem29.h | ⊢ 𝐻  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 8 |  | etransclem29.c | ⊢ 𝐶  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } ) | 
						
							| 9 |  | etransclem29.e | ⊢ 𝐸  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 10 | 1 2 | dvdmsscn | ⊢ ( 𝜑  →  𝑋  ⊆  ℂ ) | 
						
							| 11 | 10 3 4 5 7 9 | etransclem4 | ⊢ ( 𝜑  →  𝐹  =  𝐸 ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝜑  →  ( 𝑆  D𝑛  𝐹 )  =  ( 𝑆  D𝑛  𝐸 ) ) | 
						
							| 13 | 12 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  =  ( ( 𝑆  D𝑛  𝐸 ) ‘ 𝑁 ) ) | 
						
							| 14 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 15 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑋  ⊆  ℂ ) | 
						
							| 16 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 18 | 15 16 7 17 | etransclem1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐻 ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) | 
						
							| 19 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 20 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 21 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 22 |  | etransclem5 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 23 | 7 22 | eqtri | ⊢ 𝐻  =  ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 24 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 25 |  | elfznn0 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑁 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 26 | 25 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 27 | 19 20 21 23 24 26 | etransclem20 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ 𝑖 ) : 𝑋 ⟶ ℂ ) | 
						
							| 28 | 1 2 14 18 6 27 9 8 | dvnprod | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐸 ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 29 | 13 28 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) ) ) |