| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvnprod.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | dvnprod.x | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | dvnprod.t | ⊢ ( 𝜑  →  𝑇  ∈  Fin ) | 
						
							| 4 |  | dvnprod.h | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ ) | 
						
							| 5 |  | dvnprod.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | dvnprod.dvnh | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑘 ) : 𝑋 ⟶ ℂ ) | 
						
							| 7 |  | dvnprod.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑡  ∈  𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) | 
						
							| 8 |  | dvnprod.c | ⊢ 𝐶  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑇 ( 𝑐 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑢  =  𝑡  →  ( 𝑑 ‘ 𝑢 )  =  ( 𝑑 ‘ 𝑡 ) ) | 
						
							| 10 | 9 | cbvsumv | ⊢ Σ 𝑢  ∈  𝑟 ( 𝑑 ‘ 𝑢 )  =  Σ 𝑡  ∈  𝑟 ( 𝑑 ‘ 𝑡 ) | 
						
							| 11 | 10 | eqeq1i | ⊢ ( Σ 𝑢  ∈  𝑟 ( 𝑑 ‘ 𝑢 )  =  𝑚  ↔  Σ 𝑡  ∈  𝑟 ( 𝑑 ‘ 𝑡 )  =  𝑚 ) | 
						
							| 12 | 11 | rabbii | ⊢ { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑢  ∈  𝑟 ( 𝑑 ‘ 𝑢 )  =  𝑚 }  =  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑑 ‘ 𝑡 )  =  𝑚 } | 
						
							| 13 |  | fveq1 | ⊢ ( 𝑑  =  𝑒  →  ( 𝑑 ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 14 | 13 | sumeq2sdv | ⊢ ( 𝑑  =  𝑒  →  Σ 𝑡  ∈  𝑟 ( 𝑑 ‘ 𝑡 )  =  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 15 | 14 | eqeq1d | ⊢ ( 𝑑  =  𝑒  →  ( Σ 𝑡  ∈  𝑟 ( 𝑑 ‘ 𝑡 )  =  𝑚  ↔  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑚 ) ) | 
						
							| 16 | 15 | cbvrabv | ⊢ { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑑 ‘ 𝑡 )  =  𝑚 }  =  { 𝑒  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑚 } | 
						
							| 17 | 12 16 | eqtri | ⊢ { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑢  ∈  𝑟 ( 𝑑 ‘ 𝑢 )  =  𝑚 }  =  { 𝑒  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑚 } | 
						
							| 18 | 17 | mpteq2i | ⊢ ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑢  ∈  𝑟 ( 𝑑 ‘ 𝑢 )  =  𝑚 } )  =  ( 𝑚  ∈  ℕ0  ↦  { 𝑒  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑚 } ) | 
						
							| 19 |  | eqeq2 | ⊢ ( 𝑚  =  𝑛  →  ( Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑚  ↔  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑛 ) ) | 
						
							| 20 | 19 | rabbidv | ⊢ ( 𝑚  =  𝑛  →  { 𝑒  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑚 }  =  { 𝑒  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 0 ... 𝑚 )  =  ( 0 ... 𝑛 ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  =  ( ( 0 ... 𝑛 )  ↑m  𝑟 ) ) | 
						
							| 23 |  | rabeq | ⊢ ( ( ( 0 ... 𝑚 )  ↑m  𝑟 )  =  ( ( 0 ... 𝑛 )  ↑m  𝑟 )  →  { 𝑒  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑛 }  =  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝑚  =  𝑛  →  { 𝑒  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑛 }  =  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 25 | 20 24 | eqtrd | ⊢ ( 𝑚  =  𝑛  →  { 𝑒  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑚 }  =  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 26 | 25 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ0  ↦  { 𝑒  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑚 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 27 | 18 26 | eqtri | ⊢ ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑢  ∈  𝑟 ( 𝑑 ‘ 𝑢 )  =  𝑚 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 28 | 27 | mpteq2i | ⊢ ( 𝑟  ∈  𝒫  𝑇  ↦  ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑢  ∈  𝑟 ( 𝑑 ‘ 𝑢 )  =  𝑚 } ) )  =  ( 𝑟  ∈  𝒫  𝑇  ↦  ( 𝑛  ∈  ℕ0  ↦  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 29 |  | sumeq1 | ⊢ ( 𝑟  =  𝑠  →  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  Σ 𝑡  ∈  𝑠 ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 30 | 29 | eqeq1d | ⊢ ( 𝑟  =  𝑠  →  ( Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑛  ↔  Σ 𝑡  ∈  𝑠 ( 𝑒 ‘ 𝑡 )  =  𝑛 ) ) | 
						
							| 31 | 30 | rabbidv | ⊢ ( 𝑟  =  𝑠  →  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑛 }  =  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 32 |  | oveq2 | ⊢ ( 𝑟  =  𝑠  →  ( ( 0 ... 𝑛 )  ↑m  𝑟 )  =  ( ( 0 ... 𝑛 )  ↑m  𝑠 ) ) | 
						
							| 33 |  | rabeq | ⊢ ( ( ( 0 ... 𝑛 )  ↑m  𝑟 )  =  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  →  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑒 ‘ 𝑡 )  =  𝑛 }  =  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝑟  =  𝑠  →  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑒 ‘ 𝑡 )  =  𝑛 }  =  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 35 | 31 34 | eqtrd | ⊢ ( 𝑟  =  𝑠  →  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑛 }  =  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 36 | 35 | mpteq2dv | ⊢ ( 𝑟  =  𝑠  →  ( 𝑛  ∈  ℕ0  ↦  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑛 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 37 | 36 | cbvmptv | ⊢ ( 𝑟  ∈  𝒫  𝑇  ↦  ( 𝑛  ∈  ℕ0  ↦  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑟 )  ∣  Σ 𝑡  ∈  𝑟 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) )  =  ( 𝑠  ∈  𝒫  𝑇  ↦  ( 𝑛  ∈  ℕ0  ↦  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 38 | 28 37 | eqtri | ⊢ ( 𝑟  ∈  𝒫  𝑇  ↦  ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  𝑟 )  ∣  Σ 𝑢  ∈  𝑟 ( 𝑑 ‘ 𝑢 )  =  𝑚 } ) )  =  ( 𝑠  ∈  𝒫  𝑇  ↦  ( 𝑛  ∈  ℕ0  ↦  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑠 )  ∣  Σ 𝑡  ∈  𝑠 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) ) | 
						
							| 39 |  | fveq1 | ⊢ ( 𝑐  =  𝑒  →  ( 𝑐 ‘ 𝑡 )  =  ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 40 | 39 | sumeq2sdv | ⊢ ( 𝑐  =  𝑒  →  Σ 𝑡  ∈  𝑇 ( 𝑐 ‘ 𝑡 )  =  Σ 𝑡  ∈  𝑇 ( 𝑒 ‘ 𝑡 ) ) | 
						
							| 41 | 40 | eqeq1d | ⊢ ( 𝑐  =  𝑒  →  ( Σ 𝑡  ∈  𝑇 ( 𝑐 ‘ 𝑡 )  =  𝑛  ↔  Σ 𝑡  ∈  𝑇 ( 𝑒 ‘ 𝑡 )  =  𝑛 ) ) | 
						
							| 42 | 41 | cbvrabv | ⊢ { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑇 ( 𝑐 ‘ 𝑡 )  =  𝑛 }  =  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑇 ( 𝑒 ‘ 𝑡 )  =  𝑛 } | 
						
							| 43 | 42 | mpteq2i | ⊢ ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑇 ( 𝑐 ‘ 𝑡 )  =  𝑛 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑇 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 44 | 8 43 | eqtri | ⊢ 𝐶  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑒  ∈  ( ( 0 ... 𝑛 )  ↑m  𝑇 )  ∣  Σ 𝑡  ∈  𝑇 ( 𝑒 ‘ 𝑡 )  =  𝑛 } ) | 
						
							| 45 | 1 2 3 4 5 6 7 38 44 | dvnprodlem3 | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑒  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑒 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑒 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 46 |  | fveq1 | ⊢ ( 𝑒  =  𝑐  →  ( 𝑒 ‘ 𝑡 )  =  ( 𝑐 ‘ 𝑡 ) ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( 𝑒  =  𝑐  →  ( ! ‘ ( 𝑒 ‘ 𝑡 ) )  =  ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 48 | 47 | prodeq2ad | ⊢ ( 𝑒  =  𝑐  →  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑒 ‘ 𝑡 ) )  =  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 49 | 48 | oveq2d | ⊢ ( 𝑒  =  𝑐  →  ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑒 ‘ 𝑡 ) ) )  =  ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) | 
						
							| 50 | 46 | fveq2d | ⊢ ( 𝑒  =  𝑐  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑒 ‘ 𝑡 ) )  =  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ) | 
						
							| 51 | 50 | fveq1d | ⊢ ( 𝑒  =  𝑐  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑒 ‘ 𝑡 ) ) ‘ 𝑥 )  =  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 52 | 51 | prodeq2ad | ⊢ ( 𝑒  =  𝑐  →  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑒 ‘ 𝑡 ) ) ‘ 𝑥 )  =  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 53 | 49 52 | oveq12d | ⊢ ( 𝑒  =  𝑐  →  ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑒 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑒 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 54 | 53 | cbvsumv | ⊢ Σ 𝑒  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑒 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑒 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 55 |  | eqid | ⊢ Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 56 | 54 55 | eqtri | ⊢ Σ 𝑒  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑒 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑒 ‘ 𝑡 ) ) ‘ 𝑥 ) )  =  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) | 
						
							| 57 | 56 | mpteq2i | ⊢ ( 𝑥  ∈  𝑋  ↦  Σ 𝑒  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑒 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑒 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) | 
						
							| 58 | 57 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  Σ 𝑒  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑒 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑒 ‘ 𝑡 ) ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) | 
						
							| 59 | 45 58 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑡  ∈  𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) )  ·  ∏ 𝑡  ∈  𝑇 ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |