| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvnprod.s |
|
| 2 |
|
dvnprod.x |
|
| 3 |
|
dvnprod.t |
|
| 4 |
|
dvnprod.h |
|
| 5 |
|
dvnprod.n |
|
| 6 |
|
dvnprod.dvnh |
|
| 7 |
|
dvnprod.f |
|
| 8 |
|
dvnprod.c |
|
| 9 |
|
fveq2 |
|
| 10 |
9
|
cbvsumv |
|
| 11 |
10
|
eqeq1i |
|
| 12 |
11
|
rabbii |
|
| 13 |
|
fveq1 |
|
| 14 |
13
|
sumeq2sdv |
|
| 15 |
14
|
eqeq1d |
|
| 16 |
15
|
cbvrabv |
|
| 17 |
12 16
|
eqtri |
|
| 18 |
17
|
mpteq2i |
|
| 19 |
|
eqeq2 |
|
| 20 |
19
|
rabbidv |
|
| 21 |
|
oveq2 |
|
| 22 |
21
|
oveq1d |
|
| 23 |
|
rabeq |
|
| 24 |
22 23
|
syl |
|
| 25 |
20 24
|
eqtrd |
|
| 26 |
25
|
cbvmptv |
|
| 27 |
18 26
|
eqtri |
|
| 28 |
27
|
mpteq2i |
|
| 29 |
|
sumeq1 |
|
| 30 |
29
|
eqeq1d |
|
| 31 |
30
|
rabbidv |
|
| 32 |
|
oveq2 |
|
| 33 |
|
rabeq |
|
| 34 |
32 33
|
syl |
|
| 35 |
31 34
|
eqtrd |
|
| 36 |
35
|
mpteq2dv |
|
| 37 |
36
|
cbvmptv |
|
| 38 |
28 37
|
eqtri |
|
| 39 |
|
fveq1 |
|
| 40 |
39
|
sumeq2sdv |
|
| 41 |
40
|
eqeq1d |
|
| 42 |
41
|
cbvrabv |
|
| 43 |
42
|
mpteq2i |
|
| 44 |
8 43
|
eqtri |
|
| 45 |
1 2 3 4 5 6 7 38 44
|
dvnprodlem3 |
|
| 46 |
|
fveq1 |
|
| 47 |
46
|
fveq2d |
|
| 48 |
47
|
prodeq2ad |
|
| 49 |
48
|
oveq2d |
|
| 50 |
46
|
fveq2d |
|
| 51 |
50
|
fveq1d |
|
| 52 |
51
|
prodeq2ad |
|
| 53 |
49 52
|
oveq12d |
|
| 54 |
53
|
cbvsumv |
|
| 55 |
|
eqid |
|
| 56 |
54 55
|
eqtri |
|
| 57 |
56
|
mpteq2i |
|
| 58 |
57
|
a1i |
|
| 59 |
45 58
|
eqtrd |
|