| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvnprodlem3.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
dvnprodlem3.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 3 |
|
dvnprodlem3.t |
⊢ ( 𝜑 → 𝑇 ∈ Fin ) |
| 4 |
|
dvnprodlem3.h |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ ) |
| 5 |
|
dvnprodlem3.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 6 |
|
dvnprodlem3.dvnh |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) |
| 7 |
|
dvnprodlem3.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) |
| 8 |
|
dvnprodlem3.d |
⊢ 𝐷 = ( 𝑠 ∈ 𝒫 𝑇 ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
| 9 |
|
dvnprodlem3.c |
⊢ 𝐶 = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
| 10 |
|
prodeq1 |
⊢ ( 𝑠 = ∅ → ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) |
| 11 |
10
|
mpteq2dv |
⊢ ( 𝑠 = ∅ → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝑠 = ∅ → ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ) |
| 13 |
12
|
fveq1d |
⊢ ( 𝑠 = ∅ → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑠 = ∅ → ( 𝐷 ‘ 𝑠 ) = ( 𝐷 ‘ ∅ ) ) |
| 15 |
14
|
fveq1d |
⊢ ( 𝑠 = ∅ → ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) = ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ) |
| 16 |
15
|
sumeq1d |
⊢ ( 𝑠 = ∅ → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 17 |
|
prodeq1 |
⊢ ( 𝑠 = ∅ → ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑠 = ∅ → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 19 |
|
prodeq1 |
⊢ ( 𝑠 = ∅ → ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) |
| 20 |
18 19
|
oveq12d |
⊢ ( 𝑠 = ∅ → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 21 |
20
|
sumeq2sdv |
⊢ ( 𝑠 = ∅ → Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 22 |
16 21
|
eqtrd |
⊢ ( 𝑠 = ∅ → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 23 |
22
|
mpteq2dv |
⊢ ( 𝑠 = ∅ → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 24 |
13 23
|
eqeq12d |
⊢ ( 𝑠 = ∅ → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
| 25 |
24
|
ralbidv |
⊢ ( 𝑠 = ∅ → ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
| 26 |
|
prodeq1 |
⊢ ( 𝑠 = 𝑟 → ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) |
| 27 |
26
|
mpteq2dv |
⊢ ( 𝑠 = 𝑟 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝑠 = 𝑟 → ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ) |
| 29 |
28
|
fveq1d |
⊢ ( 𝑠 = 𝑟 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑠 = 𝑟 → ( 𝐷 ‘ 𝑠 ) = ( 𝐷 ‘ 𝑟 ) ) |
| 31 |
30
|
fveq1d |
⊢ ( 𝑠 = 𝑟 → ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) = ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ) |
| 32 |
31
|
sumeq1d |
⊢ ( 𝑠 = 𝑟 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 33 |
|
prodeq1 |
⊢ ( 𝑠 = 𝑟 → ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
| 34 |
33
|
oveq2d |
⊢ ( 𝑠 = 𝑟 → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 35 |
|
prodeq1 |
⊢ ( 𝑠 = 𝑟 → ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) |
| 36 |
34 35
|
oveq12d |
⊢ ( 𝑠 = 𝑟 → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 37 |
36
|
sumeq2sdv |
⊢ ( 𝑠 = 𝑟 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 38 |
32 37
|
eqtrd |
⊢ ( 𝑠 = 𝑟 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 39 |
38
|
mpteq2dv |
⊢ ( 𝑠 = 𝑟 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 40 |
29 39
|
eqeq12d |
⊢ ( 𝑠 = 𝑟 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
| 41 |
40
|
ralbidv |
⊢ ( 𝑠 = 𝑟 → ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
| 42 |
|
prodeq1 |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) |
| 43 |
42
|
mpteq2dv |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
| 44 |
43
|
oveq2d |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ) |
| 45 |
44
|
fveq1d |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) |
| 46 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( 𝐷 ‘ 𝑠 ) = ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ) |
| 47 |
46
|
fveq1d |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) = ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ) |
| 48 |
47
|
sumeq1d |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 49 |
|
prodeq1 |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
| 50 |
49
|
oveq2d |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 51 |
|
prodeq1 |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) |
| 52 |
50 51
|
oveq12d |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 53 |
52
|
sumeq2sdv |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 54 |
48 53
|
eqtrd |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 55 |
54
|
mpteq2dv |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 56 |
45 55
|
eqeq12d |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
| 57 |
56
|
ralbidv |
⊢ ( 𝑠 = ( 𝑟 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
| 58 |
|
prodeq1 |
⊢ ( 𝑠 = 𝑇 → ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ∏ 𝑡 ∈ 𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) |
| 59 |
58
|
mpteq2dv |
⊢ ( 𝑠 = 𝑇 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
| 60 |
7
|
a1i |
⊢ ( 𝑠 = 𝑇 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
| 61 |
60
|
eqcomd |
⊢ ( 𝑠 = 𝑇 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑇 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = 𝐹 ) |
| 62 |
59 61
|
eqtrd |
⊢ ( 𝑠 = 𝑇 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = 𝐹 ) |
| 63 |
62
|
oveq2d |
⊢ ( 𝑠 = 𝑇 → ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 𝐹 ) ) |
| 64 |
63
|
fveq1d |
⊢ ( 𝑠 = 𝑇 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
| 65 |
|
fveq2 |
⊢ ( 𝑠 = 𝑇 → ( 𝐷 ‘ 𝑠 ) = ( 𝐷 ‘ 𝑇 ) ) |
| 66 |
65
|
fveq1d |
⊢ ( 𝑠 = 𝑇 → ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) = ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ) |
| 67 |
66
|
sumeq1d |
⊢ ( 𝑠 = 𝑇 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 68 |
|
prodeq1 |
⊢ ( 𝑠 = 𝑇 → ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) |
| 69 |
68
|
oveq2d |
⊢ ( 𝑠 = 𝑇 → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 70 |
|
prodeq1 |
⊢ ( 𝑠 = 𝑇 → ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) |
| 71 |
69 70
|
oveq12d |
⊢ ( 𝑠 = 𝑇 → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 72 |
71
|
sumeq2sdv |
⊢ ( 𝑠 = 𝑇 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 73 |
67 72
|
eqtrd |
⊢ ( 𝑠 = 𝑇 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 74 |
73
|
mpteq2dv |
⊢ ( 𝑠 = 𝑇 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 75 |
64 74
|
eqeq12d |
⊢ ( 𝑠 = 𝑇 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
| 76 |
75
|
ralbidv |
⊢ ( 𝑠 = 𝑇 → ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑠 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑠 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑠 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑠 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
| 77 |
|
prod0 |
⊢ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = 1 |
| 78 |
77
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ 1 ) |
| 79 |
78
|
oveq2i |
⊢ ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) |
| 80 |
79
|
a1i |
⊢ ( 𝑘 = 0 → ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ) |
| 81 |
|
id |
⊢ ( 𝑘 = 0 → 𝑘 = 0 ) |
| 82 |
80 81
|
fveq12d |
⊢ ( 𝑘 = 0 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 0 ) ) |
| 83 |
82
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 0 ) ) |
| 84 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 85 |
1 84
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 86 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 1 ∈ ℂ ) |
| 87 |
86
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 1 ) : 𝑋 ⟶ ℂ ) |
| 88 |
|
1re |
⊢ 1 ∈ ℝ |
| 89 |
88
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝑋 1 ∈ ℝ |
| 90 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑋 1 ∈ ℝ → dom ( 𝑥 ∈ 𝑋 ↦ 1 ) = 𝑋 ) |
| 91 |
89 90
|
ax-mp |
⊢ dom ( 𝑥 ∈ 𝑋 ↦ 1 ) = 𝑋 |
| 92 |
91
|
a1i |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 1 ) = 𝑋 ) |
| 93 |
92
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 1 ) : dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⟶ ℂ ↔ ( 𝑥 ∈ 𝑋 ↦ 1 ) : 𝑋 ⟶ ℂ ) ) |
| 94 |
87 93
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 1 ) : dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⟶ ℂ ) |
| 95 |
|
restsspw |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ⊆ 𝒫 𝑆 |
| 96 |
95 2
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ 𝒫 𝑆 ) |
| 97 |
|
elpwi |
⊢ ( 𝑋 ∈ 𝒫 𝑆 → 𝑋 ⊆ 𝑆 ) |
| 98 |
96 97
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 99 |
92 98
|
eqsstrd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⊆ 𝑆 ) |
| 100 |
94 99
|
jca |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 1 ) : dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⟶ ℂ ∧ dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⊆ 𝑆 ) ) |
| 101 |
|
cnex |
⊢ ℂ ∈ V |
| 102 |
101
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
| 103 |
|
elpm2g |
⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) → ( ( 𝑥 ∈ 𝑋 ↦ 1 ) ∈ ( ℂ ↑pm 𝑆 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ 1 ) : dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⟶ ℂ ∧ dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⊆ 𝑆 ) ) ) |
| 104 |
102 1 103
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 1 ) ∈ ( ℂ ↑pm 𝑆 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ 1 ) : dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⟶ ℂ ∧ dom ( 𝑥 ∈ 𝑋 ↦ 1 ) ⊆ 𝑆 ) ) ) |
| 105 |
100 104
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 1 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 106 |
|
dvn0 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 1 ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ 1 ) ) |
| 107 |
85 105 106
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ 1 ) ) |
| 108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ 1 ) ) |
| 109 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) = ( ( 𝐷 ‘ ∅ ) ‘ 0 ) ) |
| 110 |
109
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) = ( ( 𝐷 ‘ ∅ ) ‘ 0 ) ) |
| 111 |
|
oveq2 |
⊢ ( 𝑠 = ∅ → ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m ∅ ) ) |
| 112 |
|
elmapfn |
⊢ ( 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) → 𝑥 Fn ∅ ) |
| 113 |
|
fn0 |
⊢ ( 𝑥 Fn ∅ ↔ 𝑥 = ∅ ) |
| 114 |
112 113
|
sylib |
⊢ ( 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) → 𝑥 = ∅ ) |
| 115 |
|
velsn |
⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) |
| 116 |
114 115
|
sylibr |
⊢ ( 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) → 𝑥 ∈ { ∅ } ) |
| 117 |
115
|
biimpi |
⊢ ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ ) |
| 118 |
|
id |
⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) |
| 119 |
|
f0 |
⊢ ∅ : ∅ ⟶ ( 0 ... 𝑛 ) |
| 120 |
|
ovex |
⊢ ( 0 ... 𝑛 ) ∈ V |
| 121 |
|
0ex |
⊢ ∅ ∈ V |
| 122 |
120 121
|
elmap |
⊢ ( ∅ ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) ↔ ∅ : ∅ ⟶ ( 0 ... 𝑛 ) ) |
| 123 |
119 122
|
mpbir |
⊢ ∅ ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) |
| 124 |
123
|
a1i |
⊢ ( 𝑥 = ∅ → ∅ ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) ) |
| 125 |
118 124
|
eqeltrd |
⊢ ( 𝑥 = ∅ → 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) ) |
| 126 |
117 125
|
syl |
⊢ ( 𝑥 ∈ { ∅ } → 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) ) |
| 127 |
116 126
|
impbii |
⊢ ( 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) ↔ 𝑥 ∈ { ∅ } ) |
| 128 |
127
|
ax-gen |
⊢ ∀ 𝑥 ( 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) ↔ 𝑥 ∈ { ∅ } ) |
| 129 |
|
dfcleq |
⊢ ( ( ( 0 ... 𝑛 ) ↑m ∅ ) = { ∅ } ↔ ∀ 𝑥 ( 𝑥 ∈ ( ( 0 ... 𝑛 ) ↑m ∅ ) ↔ 𝑥 ∈ { ∅ } ) ) |
| 130 |
128 129
|
mpbir |
⊢ ( ( 0 ... 𝑛 ) ↑m ∅ ) = { ∅ } |
| 131 |
130
|
a1i |
⊢ ( 𝑠 = ∅ → ( ( 0 ... 𝑛 ) ↑m ∅ ) = { ∅ } ) |
| 132 |
111 131
|
eqtrd |
⊢ ( 𝑠 = ∅ → ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = { ∅ } ) |
| 133 |
|
rabeq |
⊢ ( ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = { ∅ } → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
| 134 |
132 133
|
syl |
⊢ ( 𝑠 = ∅ → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
| 135 |
|
sumeq1 |
⊢ ( 𝑠 = ∅ → Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) ) |
| 136 |
135
|
eqeq1d |
⊢ ( 𝑠 = ∅ → ( Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 ) ) |
| 137 |
136
|
rabbidv |
⊢ ( 𝑠 = ∅ → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
| 138 |
134 137
|
eqtrd |
⊢ ( 𝑠 = ∅ → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
| 139 |
138
|
mpteq2dv |
⊢ ( 𝑠 = ∅ → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
| 140 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝑇 |
| 141 |
140
|
a1i |
⊢ ( 𝜑 → ∅ ∈ 𝒫 𝑇 ) |
| 142 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 143 |
142
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V |
| 144 |
143
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V ) |
| 145 |
8 139 141 144
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐷 ‘ ∅ ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
| 146 |
|
eqeq2 |
⊢ ( 𝑛 = 0 → ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 ) ) |
| 147 |
146
|
rabbidv |
⊢ ( 𝑛 = 0 → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } ) |
| 148 |
147
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 = 0 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } ) |
| 149 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 150 |
149
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 151 |
|
p0ex |
⊢ { ∅ } ∈ V |
| 152 |
151
|
rabex |
⊢ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } ∈ V |
| 153 |
152
|
a1i |
⊢ ( 𝜑 → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } ∈ V ) |
| 154 |
145 148 150 153
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐷 ‘ ∅ ) ‘ 0 ) = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } ) |
| 155 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( 𝐷 ‘ ∅ ) ‘ 0 ) = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } ) |
| 156 |
|
snidg |
⊢ ( ∅ ∈ V → ∅ ∈ { ∅ } ) |
| 157 |
121 156
|
ax-mp |
⊢ ∅ ∈ { ∅ } |
| 158 |
|
eqid |
⊢ 0 = 0 |
| 159 |
157 158
|
pm3.2i |
⊢ ( ∅ ∈ { ∅ } ∧ 0 = 0 ) |
| 160 |
|
sum0 |
⊢ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 |
| 161 |
160
|
a1i |
⊢ ( 𝑐 = ∅ → Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 ) |
| 162 |
161
|
eqeq1d |
⊢ ( 𝑐 = ∅ → ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 ↔ 0 = 0 ) ) |
| 163 |
162
|
elrab |
⊢ ( ∅ ∈ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } ↔ ( ∅ ∈ { ∅ } ∧ 0 = 0 ) ) |
| 164 |
159 163
|
mpbir |
⊢ ∅ ∈ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } |
| 165 |
164
|
n0ii |
⊢ ¬ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = ∅ |
| 166 |
|
eqid |
⊢ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } |
| 167 |
|
rabrsn |
⊢ ( { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } → ( { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = ∅ ∨ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = { ∅ } ) ) |
| 168 |
166 167
|
ax-mp |
⊢ ( { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = ∅ ∨ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = { ∅ } ) |
| 169 |
165 168
|
mtpor |
⊢ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = { ∅ } |
| 170 |
169
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = { ∅ } ) |
| 171 |
|
iftrue |
⊢ ( 𝑘 = 0 → if ( 𝑘 = 0 , { ∅ } , ∅ ) = { ∅ } ) |
| 172 |
171
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → if ( 𝑘 = 0 , { ∅ } , ∅ ) = { ∅ } ) |
| 173 |
170 172
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 } = if ( 𝑘 = 0 , { ∅ } , ∅ ) ) |
| 174 |
110 155 173
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) = if ( 𝑘 = 0 , { ∅ } , ∅ ) ) |
| 175 |
174 172
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) = { ∅ } ) |
| 176 |
175
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ { ∅ } ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 177 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( ! ‘ 𝑘 ) = ( ! ‘ 0 ) ) |
| 178 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
| 179 |
178
|
a1i |
⊢ ( 𝑘 = 0 → ( ! ‘ 0 ) = 1 ) |
| 180 |
177 179
|
eqtrd |
⊢ ( 𝑘 = 0 → ( ! ‘ 𝑘 ) = 1 ) |
| 181 |
180
|
oveq1d |
⊢ ( 𝑘 = 0 → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( 1 / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 182 |
|
prod0 |
⊢ ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = 1 |
| 183 |
182
|
oveq2i |
⊢ ( 1 / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( 1 / 1 ) |
| 184 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 185 |
183 184
|
eqtri |
⊢ ( 1 / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = 1 |
| 186 |
181 185
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = 1 ) |
| 187 |
|
prod0 |
⊢ ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = 1 |
| 188 |
187
|
a1i |
⊢ ( 𝑘 = 0 → ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = 1 ) |
| 189 |
186 188
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( 1 · 1 ) ) |
| 190 |
189
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 = 0 ) ∧ 𝑐 ∈ { ∅ } ) → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( 1 · 1 ) ) |
| 191 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
| 192 |
191
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 = 0 ) ∧ 𝑐 ∈ { ∅ } ) → ( 1 · 1 ) = 1 ) |
| 193 |
190 192
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 = 0 ) ∧ 𝑐 ∈ { ∅ } ) → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = 1 ) |
| 194 |
193
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → Σ 𝑐 ∈ { ∅ } ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ { ∅ } 1 ) |
| 195 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 196 |
|
eqidd |
⊢ ( 𝑐 = ∅ → 1 = 1 ) |
| 197 |
196
|
sumsn |
⊢ ( ( ∅ ∈ V ∧ 1 ∈ ℂ ) → Σ 𝑐 ∈ { ∅ } 1 = 1 ) |
| 198 |
121 195 197
|
mp2an |
⊢ Σ 𝑐 ∈ { ∅ } 1 = 1 |
| 199 |
198
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → Σ 𝑐 ∈ { ∅ } 1 = 1 ) |
| 200 |
176 194 199
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = 1 ) |
| 201 |
200
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ 1 ) ) |
| 202 |
201
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( 𝑥 ∈ 𝑋 ↦ 1 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 203 |
83 108 202
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 204 |
203
|
a1d |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
| 205 |
79
|
fveq1i |
⊢ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 𝑘 ) |
| 206 |
205
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 𝑘 ) ) |
| 207 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 208 |
207
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 209 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 210 |
209
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 211 |
195
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 1 ∈ ℂ ) |
| 212 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
| 213 |
212
|
adantl |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 214 |
|
neqne |
⊢ ( ¬ 𝑘 = 0 → 𝑘 ≠ 0 ) |
| 215 |
214
|
adantr |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ≠ 0 ) |
| 216 |
213 215
|
jca |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑘 ∈ ℕ0 ∧ 𝑘 ≠ 0 ) ) |
| 217 |
|
elnnne0 |
⊢ ( 𝑘 ∈ ℕ ↔ ( 𝑘 ∈ ℕ0 ∧ 𝑘 ≠ 0 ) ) |
| 218 |
216 217
|
sylibr |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
| 219 |
218
|
adantll |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
| 220 |
208 210 211 219
|
dvnmptconst |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 1 ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) ) |
| 221 |
145
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐷 ‘ ∅ ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
| 222 |
|
eqeq2 |
⊢ ( 𝑛 = 𝑘 → ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) ) |
| 223 |
222
|
rabbidv |
⊢ ( 𝑛 = 𝑘 → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
| 224 |
223
|
adantl |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑛 = 𝑘 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 } ) |
| 225 |
|
eqidd |
⊢ ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 → 𝑘 = 𝑘 ) |
| 226 |
|
id |
⊢ ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 → Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) |
| 227 |
226
|
eqcomd |
⊢ ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 → 𝑘 = Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) ) |
| 228 |
160
|
a1i |
⊢ ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 → Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 0 ) |
| 229 |
225 227 228
|
3eqtrd |
⊢ ( Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 → 𝑘 = 0 ) |
| 230 |
229
|
adantl |
⊢ ( ( 𝑐 ∈ { ∅ } ∧ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) → 𝑘 = 0 ) |
| 231 |
230
|
adantll |
⊢ ( ( ( ¬ 𝑘 = 0 ∧ 𝑐 ∈ { ∅ } ) ∧ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) → 𝑘 = 0 ) |
| 232 |
|
simpll |
⊢ ( ( ( ¬ 𝑘 = 0 ∧ 𝑐 ∈ { ∅ } ) ∧ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) → ¬ 𝑘 = 0 ) |
| 233 |
231 232
|
pm2.65da |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑐 ∈ { ∅ } ) → ¬ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) |
| 234 |
233
|
ralrimiva |
⊢ ( ¬ 𝑘 = 0 → ∀ 𝑐 ∈ { ∅ } ¬ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) |
| 235 |
|
rabeq0 |
⊢ ( { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 } = ∅ ↔ ∀ 𝑐 ∈ { ∅ } ¬ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 ) |
| 236 |
234 235
|
sylibr |
⊢ ( ¬ 𝑘 = 0 → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 } = ∅ ) |
| 237 |
236
|
adantr |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑛 = 𝑘 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑘 } = ∅ ) |
| 238 |
224 237
|
eqtrd |
⊢ ( ( ¬ 𝑘 = 0 ∧ 𝑛 = 𝑘 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } = ∅ ) |
| 239 |
238
|
adantll |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑛 = 𝑘 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } = ∅ ) |
| 240 |
239
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑛 = 𝑘 ) → { 𝑐 ∈ { ∅ } ∣ Σ 𝑡 ∈ ∅ ( 𝑐 ‘ 𝑡 ) = 𝑛 } = ∅ ) |
| 241 |
212
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 242 |
121
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ∅ ∈ V ) |
| 243 |
221 240 241 242
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) = ∅ ) |
| 244 |
243
|
sumeq1d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ∅ ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 245 |
|
sum0 |
⊢ Σ 𝑐 ∈ ∅ ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = 0 |
| 246 |
245
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → Σ 𝑐 ∈ ∅ ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = 0 ) |
| 247 |
244 246
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 0 = Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 248 |
247
|
mpteq2dv |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 ∈ 𝑋 ↦ 0 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 249 |
206 220 248
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 250 |
249
|
ex |
⊢ ( ( 𝜑 ∧ ¬ 𝑘 = 0 ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
| 251 |
204 250
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
| 252 |
251
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ∅ ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ∅ ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ∅ ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ∅ ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 253 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ) |
| 254 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) |
| 255 |
254
|
prodeq2ad |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) ) |
| 256 |
|
fveq2 |
⊢ ( 𝑡 = 𝑢 → ( 𝐻 ‘ 𝑡 ) = ( 𝐻 ‘ 𝑢 ) ) |
| 257 |
256
|
fveq1d |
⊢ ( 𝑡 = 𝑢 → ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) = ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) |
| 258 |
257
|
cbvprodv |
⊢ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) = ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) |
| 259 |
258
|
a1i |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑦 ) = ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) |
| 260 |
255 259
|
eqtrd |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) = ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) |
| 261 |
260
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) |
| 262 |
261
|
oveq2i |
⊢ ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) = ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) |
| 263 |
262
|
fveq1i |
⊢ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) |
| 264 |
|
fveq2 |
⊢ ( 𝑡 = 𝑢 → ( 𝑐 ‘ 𝑡 ) = ( 𝑐 ‘ 𝑢 ) ) |
| 265 |
264
|
fveq2d |
⊢ ( 𝑡 = 𝑢 → ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) |
| 266 |
265
|
cbvprodv |
⊢ ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) = ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) |
| 267 |
266
|
oveq2i |
⊢ ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) |
| 268 |
267
|
a1i |
⊢ ( 𝑥 = 𝑦 → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) ) |
| 269 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑦 ) ) |
| 270 |
269
|
prodeq2ad |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑦 ) ) |
| 271 |
256
|
oveq2d |
⊢ ( 𝑡 = 𝑢 → ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) = ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ) |
| 272 |
271 264
|
fveq12d |
⊢ ( 𝑡 = 𝑢 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ) |
| 273 |
272
|
fveq1d |
⊢ ( 𝑡 = 𝑢 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑦 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) |
| 274 |
273
|
cbvprodv |
⊢ ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑦 ) = ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) |
| 275 |
274
|
a1i |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑦 ) = ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) |
| 276 |
270 275
|
eqtrd |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) = ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) |
| 277 |
268 276
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) |
| 278 |
277
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑦 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) |
| 279 |
|
fveq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 ‘ 𝑢 ) = ( 𝑑 ‘ 𝑢 ) ) |
| 280 |
279
|
fveq2d |
⊢ ( 𝑐 = 𝑑 → ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) = ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) |
| 281 |
280
|
prodeq2ad |
⊢ ( 𝑐 = 𝑑 → ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) = ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) |
| 282 |
281
|
oveq2d |
⊢ ( 𝑐 = 𝑑 → ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) ) |
| 283 |
279
|
fveq2d |
⊢ ( 𝑐 = 𝑑 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ) |
| 284 |
283
|
fveq1d |
⊢ ( 𝑐 = 𝑑 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) = ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) |
| 285 |
284
|
prodeq2ad |
⊢ ( 𝑐 = 𝑑 → ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) = ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) |
| 286 |
282 285
|
oveq12d |
⊢ ( 𝑐 = 𝑑 → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) = ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) |
| 287 |
286
|
cbvsumv |
⊢ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) = Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) |
| 288 |
287
|
a1i |
⊢ ( 𝑥 = 𝑦 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑐 ‘ 𝑢 ) ) ‘ 𝑦 ) ) = Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) |
| 289 |
278 288
|
eqtrd |
⊢ ( 𝑥 = 𝑦 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) |
| 290 |
289
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) |
| 291 |
263 290
|
eqeq12i |
⊢ ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) |
| 292 |
291
|
ralbii |
⊢ ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) |
| 293 |
292
|
biimpi |
⊢ ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) |
| 294 |
293
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) |
| 295 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 296 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 297 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 298 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑇 ∈ Fin ) |
| 299 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝜑 ) |
| 300 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
| 301 |
299 300 4
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) : 𝑋 ⟶ ℂ ) |
| 302 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
| 303 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝜑 ) |
| 304 |
303
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ ( 0 ... 𝑁 ) ) → 𝜑 ) |
| 305 |
|
simp2 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ ( 0 ... 𝑁 ) ) → 𝑡 ∈ 𝑇 ) |
| 306 |
|
simp3 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ ( 0 ... 𝑁 ) ) → ℎ ∈ ( 0 ... 𝑁 ) ) |
| 307 |
|
eleq1w |
⊢ ( 𝑗 = ℎ → ( 𝑗 ∈ ( 0 ... 𝑁 ) ↔ ℎ ∈ ( 0 ... 𝑁 ) ) ) |
| 308 |
307
|
3anbi3d |
⊢ ( 𝑗 = ℎ → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ ( 0 ... 𝑁 ) ) ) ) |
| 309 |
|
fveq2 |
⊢ ( 𝑗 = ℎ → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) = ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ℎ ) ) |
| 310 |
309
|
feq1d |
⊢ ( 𝑗 = ℎ → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ↔ ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ℎ ) : 𝑋 ⟶ ℂ ) ) |
| 311 |
308 310
|
imbi12d |
⊢ ( 𝑗 = ℎ → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ 𝑗 ) : 𝑋 ⟶ ℂ ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ℎ ) : 𝑋 ⟶ ℂ ) ) ) |
| 312 |
311 6
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ℎ ) : 𝑋 ⟶ ℂ ) |
| 313 |
304 305 306 312
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ∧ ℎ ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ℎ ) : 𝑋 ⟶ ℂ ) |
| 314 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) → 𝑟 ⊆ 𝑇 ) |
| 315 |
314
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑟 ⊆ 𝑇 ) |
| 316 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) → 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) |
| 317 |
316
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) |
| 318 |
262
|
eqcomi |
⊢ ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
| 319 |
318
|
a1i |
⊢ ( 𝑘 = 𝑙 → ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) = ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ) |
| 320 |
|
id |
⊢ ( 𝑘 = 𝑙 → 𝑘 = 𝑙 ) |
| 321 |
319 320
|
fveq12d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑙 ) ) |
| 322 |
290
|
eqcomi |
⊢ ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 323 |
322
|
a1i |
⊢ ( 𝑘 = 𝑙 → ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 324 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( ! ‘ 𝑘 ) = ( ! ‘ 𝑙 ) ) |
| 325 |
324
|
oveq1d |
⊢ ( 𝑘 = 𝑙 → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 326 |
325
|
oveq1d |
⊢ ( 𝑘 = 𝑙 → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 327 |
326
|
sumeq2sdv |
⊢ ( 𝑘 = 𝑙 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 328 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) = ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ) |
| 329 |
328
|
sumeq1d |
⊢ ( 𝑘 = 𝑙 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 330 |
327 329
|
eqtrd |
⊢ ( 𝑘 = 𝑙 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 331 |
330
|
mpteq2dv |
⊢ ( 𝑘 = 𝑙 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 332 |
323 331
|
eqtrd |
⊢ ( 𝑘 = 𝑙 → ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 333 |
321 332
|
eqeq12d |
⊢ ( 𝑘 = 𝑙 → ( ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑙 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
| 334 |
333
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ↔ ∀ 𝑙 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑙 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 335 |
334
|
biimpi |
⊢ ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) → ∀ 𝑙 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑙 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 336 |
335
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ∀ 𝑙 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑙 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑙 ) ( ( ( ! ‘ 𝑙 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 337 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 338 |
|
fveq1 |
⊢ ( 𝑑 = 𝑐 → ( 𝑑 ‘ 𝑧 ) = ( 𝑐 ‘ 𝑧 ) ) |
| 339 |
338
|
oveq2d |
⊢ ( 𝑑 = 𝑐 → ( 𝑗 − ( 𝑑 ‘ 𝑧 ) ) = ( 𝑗 − ( 𝑐 ‘ 𝑧 ) ) ) |
| 340 |
|
reseq1 |
⊢ ( 𝑑 = 𝑐 → ( 𝑑 ↾ 𝑟 ) = ( 𝑐 ↾ 𝑟 ) ) |
| 341 |
339 340
|
opeq12d |
⊢ ( 𝑑 = 𝑐 → 〈 ( 𝑗 − ( 𝑑 ‘ 𝑧 ) ) , ( 𝑑 ↾ 𝑟 ) 〉 = 〈 ( 𝑗 − ( 𝑐 ‘ 𝑧 ) ) , ( 𝑐 ↾ 𝑟 ) 〉 ) |
| 342 |
341
|
cbvmptv |
⊢ ( 𝑑 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ↦ 〈 ( 𝑗 − ( 𝑑 ‘ 𝑧 ) ) , ( 𝑑 ↾ 𝑟 ) 〉 ) = ( 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ↦ 〈 ( 𝑗 − ( 𝑐 ‘ 𝑧 ) ) , ( 𝑐 ↾ 𝑟 ) 〉 ) |
| 343 |
296 297 298 301 302 313 8 315 317 336 337 342
|
dvnprodlem2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑢 ∈ 𝑟 ( ( 𝐻 ‘ 𝑢 ) ‘ 𝑦 ) ) ) ‘ 𝑘 ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑑 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑢 ∈ 𝑟 ( ! ‘ ( 𝑑 ‘ 𝑢 ) ) ) · ∏ 𝑢 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑢 ) ) ‘ ( 𝑑 ‘ 𝑢 ) ) ‘ 𝑦 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 344 |
253 294 295 343
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 345 |
344
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) → ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 346 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) |
| 347 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ! ‘ 𝑗 ) = ( ! ‘ 𝑘 ) ) |
| 348 |
347
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 349 |
348
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 350 |
349
|
sumeq2sdv |
⊢ ( 𝑗 = 𝑘 → Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 351 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) = ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ) |
| 352 |
351
|
sumeq1d |
⊢ ( 𝑗 = 𝑘 → Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 353 |
350 352
|
eqtrd |
⊢ ( 𝑗 = 𝑘 → Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 354 |
353
|
mpteq2dv |
⊢ ( 𝑗 = 𝑘 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 355 |
346 354
|
eqeq12d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
| 356 |
355
|
cbvralvw |
⊢ ( ∀ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑗 ) ( ( ( ! ‘ 𝑗 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 357 |
345 356
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 358 |
357
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑟 ⊆ 𝑇 ∧ 𝑧 ∈ ( 𝑇 ∖ 𝑟 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ 𝑟 ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑟 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑟 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑟 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( 𝐻 ‘ 𝑡 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ ( 𝑟 ∪ { 𝑧 } ) ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ ( 𝑟 ∪ { 𝑧 } ) ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
| 359 |
25 41 57 76 252 358 3
|
findcard2d |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 360 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 361 |
5 360
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 362 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 363 |
361 362
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 364 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 365 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) = ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ) |
| 366 |
365
|
sumeq1d |
⊢ ( 𝑘 = 𝑁 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 367 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( ! ‘ 𝑘 ) = ( ! ‘ 𝑁 ) ) |
| 368 |
367
|
oveq1d |
⊢ ( 𝑘 = 𝑁 → ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) = ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) ) |
| 369 |
368
|
oveq1d |
⊢ ( 𝑘 = 𝑁 → ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 370 |
369
|
sumeq2sdv |
⊢ ( 𝑘 = 𝑁 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 371 |
366 370
|
eqtrd |
⊢ ( 𝑘 = 𝑁 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 372 |
371
|
mpteq2dv |
⊢ ( 𝑘 = 𝑁 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 373 |
364 372
|
eqeq12d |
⊢ ( 𝑘 = 𝑁 → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ↔ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) ) |
| 374 |
373
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑘 ) ( ( ( ! ‘ 𝑘 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 375 |
359 363 374
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 376 |
|
oveq2 |
⊢ ( 𝑠 = 𝑇 → ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ) |
| 377 |
|
rabeq |
⊢ ( ( ( 0 ... 𝑛 ) ↑m 𝑠 ) = ( ( 0 ... 𝑛 ) ↑m 𝑇 ) → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
| 378 |
376 377
|
syl |
⊢ ( 𝑠 = 𝑇 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
| 379 |
|
sumeq1 |
⊢ ( 𝑠 = 𝑇 → Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) ) |
| 380 |
379
|
eqeq1d |
⊢ ( 𝑠 = 𝑇 → ( Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 ↔ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 ) ) |
| 381 |
380
|
rabbidv |
⊢ ( 𝑠 = 𝑇 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
| 382 |
378 381
|
eqtrd |
⊢ ( 𝑠 = 𝑇 → { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } = { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) |
| 383 |
382
|
mpteq2dv |
⊢ ( 𝑠 = 𝑇 → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑠 ) ∣ Σ 𝑡 ∈ 𝑠 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
| 384 |
|
pwidg |
⊢ ( 𝑇 ∈ Fin → 𝑇 ∈ 𝒫 𝑇 ) |
| 385 |
3 384
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ 𝒫 𝑇 ) |
| 386 |
142
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V |
| 387 |
386
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ∈ V ) |
| 388 |
8 383 385 387
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑇 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
| 389 |
9
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m 𝑇 ) ∣ Σ 𝑡 ∈ 𝑇 ( 𝑐 ‘ 𝑡 ) = 𝑛 } ) ) |
| 390 |
388 389
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑇 ) = 𝐶 ) |
| 391 |
390
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) = ( 𝐶 ‘ 𝑁 ) ) |
| 392 |
391
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) = Σ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) |
| 393 |
392
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( ( 𝐷 ‘ 𝑇 ) ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |
| 394 |
375 393
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑐 ∈ ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 ) / ∏ 𝑡 ∈ 𝑇 ( ! ‘ ( 𝑐 ‘ 𝑡 ) ) ) · ∏ 𝑡 ∈ 𝑇 ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝑡 ) ) ‘ ( 𝑐 ‘ 𝑡 ) ) ‘ 𝑥 ) ) ) ) |