| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem30.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | etransclem30.a | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | etransclem30.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 4 |  | etransclem30.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 |  | etransclem30.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 6 |  | etransclem30.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 7 |  | etransclem30.h | ⊢ 𝐻  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 8 |  | etransclem30.c | ⊢ 𝐶  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝑋  ↦  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 9 | etransclem29 | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( 𝑐 ‘ 𝑗 ) ) ‘ 𝑥 ) ) ) ) |