Metamath Proof Explorer


Theorem etransclem29

Description: The N -th derivative of F . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etranslemdvnf2lemlem.s φS
etransclem29.a φXTopOpenfld𝑡S
etransclem29.p φP
etransclem29.m φM0
etransclem29.f F=xXxP1j=1MxjP
etransclem29.n φN0
etransclem29.h H=j0MxXxjifj=0P1P
etransclem29.c C=n0c0n0M|j=0Mcj=n
etransclem29.e E=xXj=0MHjx
Assertion etransclem29 φSDnFN=xXcCNN!j=0Mcj!j=0MSDnHjcjx

Proof

Step Hyp Ref Expression
1 etranslemdvnf2lemlem.s φS
2 etransclem29.a φXTopOpenfld𝑡S
3 etransclem29.p φP
4 etransclem29.m φM0
5 etransclem29.f F=xXxP1j=1MxjP
6 etransclem29.n φN0
7 etransclem29.h H=j0MxXxjifj=0P1P
8 etransclem29.c C=n0c0n0M|j=0Mcj=n
9 etransclem29.e E=xXj=0MHjx
10 1 2 dvdmsscn φX
11 10 3 4 5 7 9 etransclem4 φF=E
12 11 oveq2d φSDnF=SDnE
13 12 fveq1d φSDnFN=SDnEN
14 fzfid φ0MFin
15 10 adantr φj0MX
16 3 adantr φj0MP
17 simpr φj0Mj0M
18 15 16 7 17 etransclem1 φj0MHj:X
19 1 3ad2ant1 φj0Mi0NS
20 2 3ad2ant1 φj0Mi0NXTopOpenfld𝑡S
21 3 3ad2ant1 φj0Mi0NP
22 etransclem5 j0MxXxjifj=0P1P=k0MyXykifk=0P1P
23 7 22 eqtri H=k0MyXykifk=0P1P
24 simp2 φj0Mi0Nj0M
25 elfznn0 i0Ni0
26 25 3ad2ant3 φj0Mi0Ni0
27 19 20 21 23 24 26 etransclem20 φj0Mi0NSDnHji:X
28 1 2 14 18 6 27 9 8 dvnprod φSDnEN=xXcCNN!j=0Mcj!j=0MSDnHjcjx
29 13 28 eqtrd φSDnFN=xXcCNN!j=0Mcj!j=0MSDnHjcjx