Description: The N -th derivative of F . (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | etranslemdvnf2lemlem.s | |
|
etransclem29.a | |
||
etransclem29.p | |
||
etransclem29.m | |
||
etransclem29.f | |
||
etransclem29.n | |
||
etransclem29.h | |
||
etransclem29.c | |
||
etransclem29.e | |
||
Assertion | etransclem29 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etranslemdvnf2lemlem.s | |
|
2 | etransclem29.a | |
|
3 | etransclem29.p | |
|
4 | etransclem29.m | |
|
5 | etransclem29.f | |
|
6 | etransclem29.n | |
|
7 | etransclem29.h | |
|
8 | etransclem29.c | |
|
9 | etransclem29.e | |
|
10 | 1 2 | dvdmsscn | |
11 | 10 3 4 5 7 9 | etransclem4 | |
12 | 11 | oveq2d | |
13 | 12 | fveq1d | |
14 | fzfid | |
|
15 | 10 | adantr | |
16 | 3 | adantr | |
17 | simpr | |
|
18 | 15 16 7 17 | etransclem1 | |
19 | 1 | 3ad2ant1 | |
20 | 2 | 3ad2ant1 | |
21 | 3 | 3ad2ant1 | |
22 | etransclem5 | |
|
23 | 7 22 | eqtri | |
24 | simp2 | |
|
25 | elfznn0 | |
|
26 | 25 | 3ad2ant3 | |
27 | 19 20 21 23 24 26 | etransclem20 | |
28 | 1 2 14 18 6 27 9 8 | dvnprod | |
29 | 13 28 | eqtrd | |