| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem4.a |
|
| 2 |
|
etransclem4.p |
|
| 3 |
|
etransclem4.M |
|
| 4 |
|
etransclem4.f |
|
| 5 |
|
etransclem4.h |
|
| 6 |
|
etransclem4.e |
|
| 7 |
|
simpr |
|
| 8 |
|
cnex |
|
| 9 |
8
|
ssex |
|
| 10 |
|
mptexg |
|
| 11 |
1 9 10
|
3syl |
|
| 12 |
11
|
adantr |
|
| 13 |
5
|
fvmpt2 |
|
| 14 |
7 12 13
|
syl2anc |
|
| 15 |
|
ovexd |
|
| 16 |
14 15
|
fvmpt2d |
|
| 17 |
16
|
an32s |
|
| 18 |
17
|
prodeq2dv |
|
| 19 |
|
nn0uz |
|
| 20 |
3 19
|
eleqtrdi |
|
| 21 |
20
|
adantr |
|
| 22 |
1
|
sselda |
|
| 23 |
22
|
adantr |
|
| 24 |
|
elfzelz |
|
| 25 |
24
|
zcnd |
|
| 26 |
25
|
adantl |
|
| 27 |
23 26
|
subcld |
|
| 28 |
|
nnm1nn0 |
|
| 29 |
2 28
|
syl |
|
| 30 |
2
|
nnnn0d |
|
| 31 |
29 30
|
ifcld |
|
| 32 |
31
|
ad2antrr |
|
| 33 |
27 32
|
expcld |
|
| 34 |
|
oveq2 |
|
| 35 |
|
iftrue |
|
| 36 |
34 35
|
oveq12d |
|
| 37 |
21 33 36
|
fprod1p |
|
| 38 |
22
|
subid1d |
|
| 39 |
38
|
oveq1d |
|
| 40 |
|
0p1e1 |
|
| 41 |
40
|
oveq1i |
|
| 42 |
41
|
a1i |
|
| 43 |
|
0red |
|
| 44 |
|
1red |
|
| 45 |
|
elfzelz |
|
| 46 |
45
|
zred |
|
| 47 |
|
0lt1 |
|
| 48 |
47
|
a1i |
|
| 49 |
|
elfzle1 |
|
| 50 |
43 44 46 48 49
|
ltletrd |
|
| 51 |
50
|
gt0ne0d |
|
| 52 |
51
|
neneqd |
|
| 53 |
52
|
iffalsed |
|
| 54 |
53
|
oveq2d |
|
| 55 |
54
|
adantl |
|
| 56 |
42 55
|
prodeq12rdv |
|
| 57 |
56
|
adantr |
|
| 58 |
39 57
|
oveq12d |
|
| 59 |
18 37 58
|
3eqtrrd |
|
| 60 |
59
|
mpteq2dva |
|
| 61 |
60 4 6
|
3eqtr4g |
|