| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem4.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℂ ) | 
						
							| 2 |  | etransclem4.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 3 |  | etransclem4.M | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 4 |  | etransclem4.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 5 |  | etransclem4.h | ⊢ 𝐻  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝐴  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 6 |  | etransclem4.e | ⊢ 𝐸  =  ( 𝑥  ∈  𝐴  ↦  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 8 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 9 | 8 | ssex | ⊢ ( 𝐴  ⊆  ℂ  →  𝐴  ∈  V ) | 
						
							| 10 |  | mptexg | ⊢ ( 𝐴  ∈  V  →  ( 𝑥  ∈  𝐴  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  V ) | 
						
							| 11 | 1 9 10 | 3syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  V ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  𝐴  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  V ) | 
						
							| 13 | 5 | fvmpt2 | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ∧  ( 𝑥  ∈  𝐴  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  V )  →  ( 𝐻 ‘ 𝑗 )  =  ( 𝑥  ∈  𝐴  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 14 | 7 12 13 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐻 ‘ 𝑗 )  =  ( 𝑥  ∈  𝐴  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 15 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ∈  V ) | 
						
							| 16 | 14 15 | fvmpt2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 )  =  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 17 | 16 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 )  =  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 18 | 17 | prodeq2dv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 )  =  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 19 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 20 | 3 19 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 22 | 1 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℂ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 24 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 25 | 24 | zcnd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℂ ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ℂ ) | 
						
							| 27 | 23 26 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  −  𝑗 )  ∈  ℂ ) | 
						
							| 28 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 29 | 2 28 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 30 | 2 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 31 | 29 30 | ifcld | ⊢ ( 𝜑  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 32 | 31 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 33 | 27 32 | expcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ∈  ℂ ) | 
						
							| 34 |  | oveq2 | ⊢ ( 𝑗  =  0  →  ( 𝑥  −  𝑗 )  =  ( 𝑥  −  0 ) ) | 
						
							| 35 |  | iftrue | ⊢ ( 𝑗  =  0  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  ( 𝑃  −  1 ) ) | 
						
							| 36 | 34 35 | oveq12d | ⊢ ( 𝑗  =  0  →  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( 𝑥  −  0 ) ↑ ( 𝑃  −  1 ) ) ) | 
						
							| 37 | 21 33 36 | fprod1p | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( ( 𝑥  −  0 ) ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 38 | 22 | subid1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  −  0 )  =  𝑥 ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  −  0 ) ↑ ( 𝑃  −  1 ) )  =  ( 𝑥 ↑ ( 𝑃  −  1 ) ) ) | 
						
							| 40 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 41 | 40 | oveq1i | ⊢ ( ( 0  +  1 ) ... 𝑀 )  =  ( 1 ... 𝑀 ) | 
						
							| 42 | 41 | a1i | ⊢ ( 𝜑  →  ( ( 0  +  1 ) ... 𝑀 )  =  ( 1 ... 𝑀 ) ) | 
						
							| 43 |  | 0red | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  0  ∈  ℝ ) | 
						
							| 44 |  | 1red | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  1  ∈  ℝ ) | 
						
							| 45 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 46 | 45 | zred | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ℝ ) | 
						
							| 47 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 48 | 47 | a1i | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  0  <  1 ) | 
						
							| 49 |  | elfzle1 | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  1  ≤  𝑗 ) | 
						
							| 50 | 43 44 46 48 49 | ltletrd | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  0  <  𝑗 ) | 
						
							| 51 | 50 | gt0ne0d | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ≠  0 ) | 
						
							| 52 | 51 | neneqd | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  ¬  𝑗  =  0 ) | 
						
							| 53 | 52 | iffalsed | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  =  𝑃 ) | 
						
							| 54 | 53 | oveq2d | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) | 
						
							| 56 | 42 55 | prodeq12rdv | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∏ 𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) | 
						
							| 58 | 39 57 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( 𝑥  −  0 ) ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  =  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 59 | 18 37 58 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) )  =  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 ) ) | 
						
							| 60 | 59 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 ) ) ) | 
						
							| 61 | 60 4 6 | 3eqtr4g | ⊢ ( 𝜑  →  𝐹  =  𝐸 ) |