Metamath Proof Explorer


Theorem prodeq12rdv

Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodeq12rdv.1 φA=B
prodeq12rdv.2 φkBC=D
Assertion prodeq12rdv φkAC=kBD

Proof

Step Hyp Ref Expression
1 prodeq12rdv.1 φA=B
2 prodeq12rdv.2 φkBC=D
3 1 prodeq1d φkAC=kBC
4 2 prodeq2dv φkBC=kBD
5 3 4 eqtrd φkAC=kBD