| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem20.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | etransclem20.x |  |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 3 |  | etransclem20.p |  |-  ( ph -> P e. NN ) | 
						
							| 4 |  | etransclem20.h |  |-  H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 5 |  | etransclem20.J |  |-  ( ph -> J e. ( 0 ... M ) ) | 
						
							| 6 |  | etransclem20.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 7 |  | iftrue |  |-  ( if ( J = 0 , ( P - 1 ) , P ) < N -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) = 0 ) | 
						
							| 8 |  | 0cnd |  |-  ( if ( J = 0 , ( P - 1 ) , P ) < N -> 0 e. CC ) | 
						
							| 9 | 7 8 | eqeltrd |  |-  ( if ( J = 0 , ( P - 1 ) , P ) < N -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) e. CC ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( ph /\ x e. X ) /\ if ( J = 0 , ( P - 1 ) , P ) < N ) -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) e. CC ) | 
						
							| 11 |  | simpr |  |-  ( ( ( ph /\ x e. X ) /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> -. if ( J = 0 , ( P - 1 ) , P ) < N ) | 
						
							| 12 | 11 | iffalsed |  |-  ( ( ( ph /\ x e. X ) /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) = ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) | 
						
							| 13 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 14 | 3 13 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 15 | 3 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 16 | 14 15 | ifcld |  |-  ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 17 | 16 | faccld |  |-  ( ph -> ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) e. NN ) | 
						
							| 18 | 17 | nncnd |  |-  ( ph -> ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) e. CC ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) e. CC ) | 
						
							| 20 | 16 | nn0zd |  |-  ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. ZZ ) | 
						
							| 21 | 6 | nn0zd |  |-  ( ph -> N e. ZZ ) | 
						
							| 22 | 20 21 | zsubcld |  |-  ( ph -> ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. ZZ ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. ZZ ) | 
						
							| 24 | 6 | nn0red |  |-  ( ph -> N e. RR ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> N e. RR ) | 
						
							| 26 | 16 | nn0red |  |-  ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. RR ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> if ( J = 0 , ( P - 1 ) , P ) e. RR ) | 
						
							| 28 |  | simpr |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> -. if ( J = 0 , ( P - 1 ) , P ) < N ) | 
						
							| 29 | 25 27 28 | nltled |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> N <_ if ( J = 0 , ( P - 1 ) , P ) ) | 
						
							| 30 | 27 25 | subge0d |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( 0 <_ ( if ( J = 0 , ( P - 1 ) , P ) - N ) <-> N <_ if ( J = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 31 | 29 30 | mpbird |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> 0 <_ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) | 
						
							| 32 |  | elnn0z |  |-  ( ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. NN0 <-> ( ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. ZZ /\ 0 <_ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) | 
						
							| 33 | 23 31 32 | sylanbrc |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. NN0 ) | 
						
							| 34 | 33 | faccld |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) e. NN ) | 
						
							| 35 | 34 | nncnd |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) e. CC ) | 
						
							| 36 | 34 | nnne0d |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) =/= 0 ) | 
						
							| 37 | 19 35 36 | divcld |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) e. CC ) | 
						
							| 38 | 37 | adantlr |  |-  ( ( ( ph /\ x e. X ) /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) e. CC ) | 
						
							| 39 | 1 2 | dvdmsscn |  |-  ( ph -> X C_ CC ) | 
						
							| 40 | 39 | sselda |  |-  ( ( ph /\ x e. X ) -> x e. CC ) | 
						
							| 41 |  | elfzelz |  |-  ( J e. ( 0 ... M ) -> J e. ZZ ) | 
						
							| 42 | 41 | zcnd |  |-  ( J e. ( 0 ... M ) -> J e. CC ) | 
						
							| 43 | 5 42 | syl |  |-  ( ph -> J e. CC ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ x e. X ) -> J e. CC ) | 
						
							| 45 | 40 44 | subcld |  |-  ( ( ph /\ x e. X ) -> ( x - J ) e. CC ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ( ph /\ x e. X ) /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( x - J ) e. CC ) | 
						
							| 47 | 33 | adantlr |  |-  ( ( ( ph /\ x e. X ) /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. NN0 ) | 
						
							| 48 | 46 47 | expcld |  |-  ( ( ( ph /\ x e. X ) /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) e. CC ) | 
						
							| 49 | 38 48 | mulcld |  |-  ( ( ( ph /\ x e. X ) /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) e. CC ) | 
						
							| 50 | 12 49 | eqeltrd |  |-  ( ( ( ph /\ x e. X ) /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) e. CC ) | 
						
							| 51 | 10 50 | pm2.61dan |  |-  ( ( ph /\ x e. X ) -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) e. CC ) | 
						
							| 52 |  | eqid |  |-  ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) = ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) | 
						
							| 53 | 51 52 | fmptd |  |-  ( ph -> ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) : X --> CC ) | 
						
							| 54 | 1 2 3 4 5 6 | etransclem17 |  |-  ( ph -> ( ( S Dn ( H ` J ) ) ` N ) = ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) ) | 
						
							| 55 | 54 | feq1d |  |-  ( ph -> ( ( ( S Dn ( H ` J ) ) ` N ) : X --> CC <-> ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) : X --> CC ) ) | 
						
							| 56 | 53 55 | mpbird |  |-  ( ph -> ( ( S Dn ( H ` J ) ) ` N ) : X --> CC ) |