| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem17.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | etransclem17.x |  |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 3 |  | etransclem17.p |  |-  ( ph -> P e. NN ) | 
						
							| 4 |  | etransclem17.1 |  |-  H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 5 |  | etransclem17.J |  |-  ( ph -> J e. ( 0 ... M ) ) | 
						
							| 6 |  | etransclem17.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 7 | 1 2 | dvdmsscn |  |-  ( ph -> X C_ CC ) | 
						
							| 8 | 7 | sselda |  |-  ( ( ph /\ x e. X ) -> x e. CC ) | 
						
							| 9 | 8 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> x e. CC ) | 
						
							| 10 |  | elfzelz |  |-  ( j e. ( 0 ... M ) -> j e. ZZ ) | 
						
							| 11 | 10 | zcnd |  |-  ( j e. ( 0 ... M ) -> j e. CC ) | 
						
							| 12 | 11 | ad2antlr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> j e. CC ) | 
						
							| 13 | 9 12 | negsubd |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> ( x + -u j ) = ( x - j ) ) | 
						
							| 14 | 13 | eqcomd |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> ( x - j ) = ( x + -u j ) ) | 
						
							| 15 | 14 | oveq1d |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( x + -u j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 16 | 15 | mpteq2dva |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( x e. X |-> ( ( x + -u j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 17 | 16 | mpteq2dva |  |-  ( ph -> ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x + -u j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) ) | 
						
							| 18 | 4 17 | eqtrid |  |-  ( ph -> H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x + -u j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) ) | 
						
							| 19 |  | negeq |  |-  ( j = J -> -u j = -u J ) | 
						
							| 20 | 19 | oveq2d |  |-  ( j = J -> ( x + -u j ) = ( x + -u J ) ) | 
						
							| 21 |  | eqeq1 |  |-  ( j = J -> ( j = 0 <-> J = 0 ) ) | 
						
							| 22 | 21 | ifbid |  |-  ( j = J -> if ( j = 0 , ( P - 1 ) , P ) = if ( J = 0 , ( P - 1 ) , P ) ) | 
						
							| 23 | 20 22 | oveq12d |  |-  ( j = J -> ( ( x + -u j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 24 | 23 | mpteq2dv |  |-  ( j = J -> ( x e. X |-> ( ( x + -u j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ph /\ j = J ) -> ( x e. X |-> ( ( x + -u j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 26 |  | mptexg |  |-  ( X e. ( ( TopOpen ` CCfld ) |`t S ) -> ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) e. _V ) | 
						
							| 27 | 2 26 | syl |  |-  ( ph -> ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) e. _V ) | 
						
							| 28 | 18 25 5 27 | fvmptd |  |-  ( ph -> ( H ` J ) = ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 29 | 28 | oveq2d |  |-  ( ph -> ( S Dn ( H ` J ) ) = ( S Dn ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) ) | 
						
							| 30 | 29 | fveq1d |  |-  ( ph -> ( ( S Dn ( H ` J ) ) ` N ) = ( ( S Dn ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) ` N ) ) | 
						
							| 31 |  | elfzelz |  |-  ( J e. ( 0 ... M ) -> J e. ZZ ) | 
						
							| 32 | 31 | zcnd |  |-  ( J e. ( 0 ... M ) -> J e. CC ) | 
						
							| 33 | 5 32 | syl |  |-  ( ph -> J e. CC ) | 
						
							| 34 | 33 | negcld |  |-  ( ph -> -u J e. CC ) | 
						
							| 35 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 36 | 3 35 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 37 | 3 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 38 | 36 37 | ifcld |  |-  ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 39 |  | eqid |  |-  ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) = ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 40 | 1 2 34 38 39 | dvnxpaek |  |-  ( ( ph /\ N e. NN0 ) -> ( ( S Dn ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) ` N ) = ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x + -u J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) ) | 
						
							| 41 | 6 40 | mpdan |  |-  ( ph -> ( ( S Dn ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) ` N ) = ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x + -u J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) ) | 
						
							| 42 | 33 | adantr |  |-  ( ( ph /\ x e. X ) -> J e. CC ) | 
						
							| 43 | 8 42 | negsubd |  |-  ( ( ph /\ x e. X ) -> ( x + -u J ) = ( x - J ) ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ( ph /\ x e. X ) -> ( ( x + -u J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) = ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) | 
						
							| 45 | 44 | oveq2d |  |-  ( ( ph /\ x e. X ) -> ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x + -u J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) = ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) | 
						
							| 46 | 45 | ifeq2d |  |-  ( ( ph /\ x e. X ) -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x + -u J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) = if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) | 
						
							| 47 | 46 | mpteq2dva |  |-  ( ph -> ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x + -u J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) = ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) ) | 
						
							| 48 | 30 41 47 | 3eqtrd |  |-  ( ph -> ( ( S Dn ( H ` J ) ) ` N ) = ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) ) |