| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem18.s |  |-  ( ph -> RR e. { RR , CC } ) | 
						
							| 2 |  | etransclem18.x |  |-  ( ph -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 3 |  | etransclem18.p |  |-  ( ph -> P e. NN ) | 
						
							| 4 |  | etransclem18.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 5 |  | etransclem18.f |  |-  F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | 
						
							| 6 |  | etransclem18.a |  |-  ( ph -> A e. RR ) | 
						
							| 7 |  | etransclem18.b |  |-  ( ph -> B e. RR ) | 
						
							| 8 |  | ioossicc |  |-  ( A (,) B ) C_ ( A [,] B ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> ( A (,) B ) C_ ( A [,] B ) ) | 
						
							| 10 |  | ioombl |  |-  ( A (,) B ) e. dom vol | 
						
							| 11 | 10 | a1i |  |-  ( ph -> ( A (,) B ) e. dom vol ) | 
						
							| 12 |  | ere |  |-  _e e. RR | 
						
							| 13 | 12 | recni |  |-  _e e. CC | 
						
							| 14 | 13 | a1i |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> _e e. CC ) | 
						
							| 15 | 6 7 | iccssred |  |-  ( ph -> ( A [,] B ) C_ RR ) | 
						
							| 16 | 15 | sselda |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR ) | 
						
							| 17 | 16 | recnd |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> x e. CC ) | 
						
							| 18 | 17 | negcld |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> -u x e. CC ) | 
						
							| 19 | 14 18 | cxpcld |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( _e ^c -u x ) e. CC ) | 
						
							| 20 | 1 2 | dvdmsscn |  |-  ( ph -> RR C_ CC ) | 
						
							| 21 | 20 3 5 | etransclem8 |  |-  ( ph -> F : RR --> CC ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> F : RR --> CC ) | 
						
							| 23 | 22 16 | ffvelcdmd |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) | 
						
							| 24 | 19 23 | mulcld |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) | 
						
							| 25 |  | eqidd |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( y e. CC |-> ( _e ^c y ) ) = ( y e. CC |-> ( _e ^c y ) ) ) | 
						
							| 26 |  | oveq2 |  |-  ( y = -u x -> ( _e ^c y ) = ( _e ^c -u x ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ y = -u x ) -> ( _e ^c y ) = ( _e ^c -u x ) ) | 
						
							| 28 | 15 20 | sstrd |  |-  ( ph -> ( A [,] B ) C_ CC ) | 
						
							| 29 | 28 | sselda |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> x e. CC ) | 
						
							| 30 | 29 | negcld |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> -u x e. CC ) | 
						
							| 31 | 13 | a1i |  |-  ( x e. CC -> _e e. CC ) | 
						
							| 32 |  | negcl |  |-  ( x e. CC -> -u x e. CC ) | 
						
							| 33 | 31 32 | cxpcld |  |-  ( x e. CC -> ( _e ^c -u x ) e. CC ) | 
						
							| 34 | 29 33 | syl |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( _e ^c -u x ) e. CC ) | 
						
							| 35 | 25 27 30 34 | fvmptd |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) = ( _e ^c -u x ) ) | 
						
							| 36 | 35 | eqcomd |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( _e ^c -u x ) = ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) | 
						
							| 37 | 36 | mpteq2dva |  |-  ( ph -> ( x e. ( A [,] B ) |-> ( _e ^c -u x ) ) = ( x e. ( A [,] B ) |-> ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) ) | 
						
							| 38 |  | epr |  |-  _e e. RR+ | 
						
							| 39 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 40 | 39 | a1i |  |-  ( _e e. RR+ -> -oo e. RR* ) | 
						
							| 41 |  | 0red |  |-  ( _e e. RR+ -> 0 e. RR ) | 
						
							| 42 |  | rpxr |  |-  ( _e e. RR+ -> _e e. RR* ) | 
						
							| 43 |  | rpgt0 |  |-  ( _e e. RR+ -> 0 < _e ) | 
						
							| 44 | 40 41 42 43 | gtnelioc |  |-  ( _e e. RR+ -> -. _e e. ( -oo (,] 0 ) ) | 
						
							| 45 | 38 44 | ax-mp |  |-  -. _e e. ( -oo (,] 0 ) | 
						
							| 46 |  | eldif |  |-  ( _e e. ( CC \ ( -oo (,] 0 ) ) <-> ( _e e. CC /\ -. _e e. ( -oo (,] 0 ) ) ) | 
						
							| 47 | 13 45 46 | mpbir2an |  |-  _e e. ( CC \ ( -oo (,] 0 ) ) | 
						
							| 48 |  | cxpcncf2 |  |-  ( _e e. ( CC \ ( -oo (,] 0 ) ) -> ( y e. CC |-> ( _e ^c y ) ) e. ( CC -cn-> CC ) ) | 
						
							| 49 | 47 48 | mp1i |  |-  ( ph -> ( y e. CC |-> ( _e ^c y ) ) e. ( CC -cn-> CC ) ) | 
						
							| 50 |  | eqid |  |-  ( x e. ( A [,] B ) |-> -u x ) = ( x e. ( A [,] B ) |-> -u x ) | 
						
							| 51 | 50 | negcncf |  |-  ( ( A [,] B ) C_ CC -> ( x e. ( A [,] B ) |-> -u x ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 52 | 28 51 | syl |  |-  ( ph -> ( x e. ( A [,] B ) |-> -u x ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 53 | 49 52 | cncfmpt1f |  |-  ( ph -> ( x e. ( A [,] B ) |-> ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 54 | 37 53 | eqeltrd |  |-  ( ph -> ( x e. ( A [,] B ) |-> ( _e ^c -u x ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 55 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 56 | 55 | a1i |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> RR C_ CC ) | 
						
							| 57 | 3 | adantr |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> P e. NN ) | 
						
							| 58 | 4 | adantr |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> M e. NN0 ) | 
						
							| 59 |  | etransclem6 |  |-  ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) ) | 
						
							| 60 | 5 59 | eqtri |  |-  F = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) ) | 
						
							| 61 | 56 57 58 60 16 | etransclem13 |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) = prod_ k e. ( 0 ... M ) ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 62 | 61 | mpteq2dva |  |-  ( ph -> ( x e. ( A [,] B ) |-> ( F ` x ) ) = ( x e. ( A [,] B ) |-> prod_ k e. ( 0 ... M ) ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 63 |  | fzfid |  |-  ( ph -> ( 0 ... M ) e. Fin ) | 
						
							| 64 | 17 | 3adant3 |  |-  ( ( ph /\ x e. ( A [,] B ) /\ k e. ( 0 ... M ) ) -> x e. CC ) | 
						
							| 65 |  | elfzelz |  |-  ( k e. ( 0 ... M ) -> k e. ZZ ) | 
						
							| 66 | 65 | zcnd |  |-  ( k e. ( 0 ... M ) -> k e. CC ) | 
						
							| 67 | 66 | 3ad2ant3 |  |-  ( ( ph /\ x e. ( A [,] B ) /\ k e. ( 0 ... M ) ) -> k e. CC ) | 
						
							| 68 | 64 67 | subcld |  |-  ( ( ph /\ x e. ( A [,] B ) /\ k e. ( 0 ... M ) ) -> ( x - k ) e. CC ) | 
						
							| 69 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 70 | 3 69 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 71 | 3 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 72 | 70 71 | ifcld |  |-  ( ph -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 73 | 72 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( A [,] B ) /\ k e. ( 0 ... M ) ) -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 74 | 68 73 | expcld |  |-  ( ( ph /\ x e. ( A [,] B ) /\ k e. ( 0 ... M ) ) -> ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) e. CC ) | 
						
							| 75 |  | nfv |  |-  F/ x ( ph /\ k e. ( 0 ... M ) ) | 
						
							| 76 |  | ssid |  |-  CC C_ CC | 
						
							| 77 | 76 | a1i |  |-  ( ph -> CC C_ CC ) | 
						
							| 78 | 28 77 | idcncfg |  |-  ( ph -> ( x e. ( A [,] B ) |-> x ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 79 | 78 | adantr |  |-  ( ( ph /\ k e. ( 0 ... M ) ) -> ( x e. ( A [,] B ) |-> x ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 80 | 28 | adantr |  |-  ( ( ph /\ k e. ( 0 ... M ) ) -> ( A [,] B ) C_ CC ) | 
						
							| 81 | 66 | adantl |  |-  ( ( ph /\ k e. ( 0 ... M ) ) -> k e. CC ) | 
						
							| 82 | 76 | a1i |  |-  ( ( ph /\ k e. ( 0 ... M ) ) -> CC C_ CC ) | 
						
							| 83 | 80 81 82 | constcncfg |  |-  ( ( ph /\ k e. ( 0 ... M ) ) -> ( x e. ( A [,] B ) |-> k ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 84 | 79 83 | subcncf |  |-  ( ( ph /\ k e. ( 0 ... M ) ) -> ( x e. ( A [,] B ) |-> ( x - k ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 85 |  | expcncf |  |-  ( if ( k = 0 , ( P - 1 ) , P ) e. NN0 -> ( y e. CC |-> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( CC -cn-> CC ) ) | 
						
							| 86 | 72 85 | syl |  |-  ( ph -> ( y e. CC |-> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( CC -cn-> CC ) ) | 
						
							| 87 | 86 | adantr |  |-  ( ( ph /\ k e. ( 0 ... M ) ) -> ( y e. CC |-> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( CC -cn-> CC ) ) | 
						
							| 88 |  | oveq1 |  |-  ( y = ( x - k ) -> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) = ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 89 | 75 84 87 82 88 | cncfcompt2 |  |-  ( ( ph /\ k e. ( 0 ... M ) ) -> ( x e. ( A [,] B ) |-> ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 90 | 28 63 74 89 | fprodcncf |  |-  ( ph -> ( x e. ( A [,] B ) |-> prod_ k e. ( 0 ... M ) ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 91 | 62 90 | eqeltrd |  |-  ( ph -> ( x e. ( A [,] B ) |-> ( F ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 92 | 54 91 | mulcncf |  |-  ( ph -> ( x e. ( A [,] B ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 93 |  | cniccibl |  |-  ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. L^1 ) | 
						
							| 94 | 6 7 92 93 | syl3anc |  |-  ( ph -> ( x e. ( A [,] B ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. L^1 ) | 
						
							| 95 | 9 11 24 94 | iblss |  |-  ( ph -> ( x e. ( A (,) B ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. L^1 ) |