Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem18.s |
|- ( ph -> RR e. { RR , CC } ) |
2 |
|
etransclem18.x |
|- ( ph -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
3 |
|
etransclem18.p |
|- ( ph -> P e. NN ) |
4 |
|
etransclem18.m |
|- ( ph -> M e. NN0 ) |
5 |
|
etransclem18.f |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
6 |
|
etransclem18.a |
|- ( ph -> A e. RR ) |
7 |
|
etransclem18.b |
|- ( ph -> B e. RR ) |
8 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
9 |
8
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
10 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
11 |
10
|
a1i |
|- ( ph -> ( A (,) B ) e. dom vol ) |
12 |
|
ere |
|- _e e. RR |
13 |
12
|
recni |
|- _e e. CC |
14 |
13
|
a1i |
|- ( ( ph /\ x e. ( A [,] B ) ) -> _e e. CC ) |
15 |
6 7
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
16 |
15
|
sselda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR ) |
17 |
16
|
recnd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. CC ) |
18 |
17
|
negcld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> -u x e. CC ) |
19 |
14 18
|
cxpcld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( _e ^c -u x ) e. CC ) |
20 |
1 2
|
dvdmsscn |
|- ( ph -> RR C_ CC ) |
21 |
20 3 5
|
etransclem8 |
|- ( ph -> F : RR --> CC ) |
22 |
21
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> F : RR --> CC ) |
23 |
22 16
|
ffvelrnd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) |
24 |
19 23
|
mulcld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) |
25 |
|
eqidd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( y e. CC |-> ( _e ^c y ) ) = ( y e. CC |-> ( _e ^c y ) ) ) |
26 |
|
oveq2 |
|- ( y = -u x -> ( _e ^c y ) = ( _e ^c -u x ) ) |
27 |
26
|
adantl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ y = -u x ) -> ( _e ^c y ) = ( _e ^c -u x ) ) |
28 |
15 20
|
sstrd |
|- ( ph -> ( A [,] B ) C_ CC ) |
29 |
28
|
sselda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. CC ) |
30 |
29
|
negcld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> -u x e. CC ) |
31 |
13
|
a1i |
|- ( x e. CC -> _e e. CC ) |
32 |
|
negcl |
|- ( x e. CC -> -u x e. CC ) |
33 |
31 32
|
cxpcld |
|- ( x e. CC -> ( _e ^c -u x ) e. CC ) |
34 |
29 33
|
syl |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( _e ^c -u x ) e. CC ) |
35 |
25 27 30 34
|
fvmptd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) = ( _e ^c -u x ) ) |
36 |
35
|
eqcomd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( _e ^c -u x ) = ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) |
37 |
36
|
mpteq2dva |
|- ( ph -> ( x e. ( A [,] B ) |-> ( _e ^c -u x ) ) = ( x e. ( A [,] B ) |-> ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) ) |
38 |
|
epr |
|- _e e. RR+ |
39 |
|
mnfxr |
|- -oo e. RR* |
40 |
39
|
a1i |
|- ( _e e. RR+ -> -oo e. RR* ) |
41 |
|
0red |
|- ( _e e. RR+ -> 0 e. RR ) |
42 |
|
rpxr |
|- ( _e e. RR+ -> _e e. RR* ) |
43 |
|
rpgt0 |
|- ( _e e. RR+ -> 0 < _e ) |
44 |
40 41 42 43
|
gtnelioc |
|- ( _e e. RR+ -> -. _e e. ( -oo (,] 0 ) ) |
45 |
38 44
|
ax-mp |
|- -. _e e. ( -oo (,] 0 ) |
46 |
|
eldif |
|- ( _e e. ( CC \ ( -oo (,] 0 ) ) <-> ( _e e. CC /\ -. _e e. ( -oo (,] 0 ) ) ) |
47 |
13 45 46
|
mpbir2an |
|- _e e. ( CC \ ( -oo (,] 0 ) ) |
48 |
|
cxpcncf2 |
|- ( _e e. ( CC \ ( -oo (,] 0 ) ) -> ( y e. CC |-> ( _e ^c y ) ) e. ( CC -cn-> CC ) ) |
49 |
47 48
|
mp1i |
|- ( ph -> ( y e. CC |-> ( _e ^c y ) ) e. ( CC -cn-> CC ) ) |
50 |
|
eqid |
|- ( x e. ( A [,] B ) |-> -u x ) = ( x e. ( A [,] B ) |-> -u x ) |
51 |
50
|
negcncf |
|- ( ( A [,] B ) C_ CC -> ( x e. ( A [,] B ) |-> -u x ) e. ( ( A [,] B ) -cn-> CC ) ) |
52 |
28 51
|
syl |
|- ( ph -> ( x e. ( A [,] B ) |-> -u x ) e. ( ( A [,] B ) -cn-> CC ) ) |
53 |
49 52
|
cncfmpt1f |
|- ( ph -> ( x e. ( A [,] B ) |-> ( ( y e. CC |-> ( _e ^c y ) ) ` -u x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
54 |
37 53
|
eqeltrd |
|- ( ph -> ( x e. ( A [,] B ) |-> ( _e ^c -u x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
55 |
|
ax-resscn |
|- RR C_ CC |
56 |
55
|
a1i |
|- ( ( ph /\ x e. ( A [,] B ) ) -> RR C_ CC ) |
57 |
3
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> P e. NN ) |
58 |
4
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> M e. NN0 ) |
59 |
|
etransclem6 |
|- ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) ) |
60 |
5 59
|
eqtri |
|- F = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( y - k ) ^ P ) ) ) |
61 |
56 57 58 60 16
|
etransclem13 |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) = prod_ k e. ( 0 ... M ) ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) |
62 |
61
|
mpteq2dva |
|- ( ph -> ( x e. ( A [,] B ) |-> ( F ` x ) ) = ( x e. ( A [,] B ) |-> prod_ k e. ( 0 ... M ) ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) |
63 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
64 |
17
|
3adant3 |
|- ( ( ph /\ x e. ( A [,] B ) /\ k e. ( 0 ... M ) ) -> x e. CC ) |
65 |
|
elfzelz |
|- ( k e. ( 0 ... M ) -> k e. ZZ ) |
66 |
65
|
zcnd |
|- ( k e. ( 0 ... M ) -> k e. CC ) |
67 |
66
|
3ad2ant3 |
|- ( ( ph /\ x e. ( A [,] B ) /\ k e. ( 0 ... M ) ) -> k e. CC ) |
68 |
64 67
|
subcld |
|- ( ( ph /\ x e. ( A [,] B ) /\ k e. ( 0 ... M ) ) -> ( x - k ) e. CC ) |
69 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
70 |
3 69
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
71 |
3
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
72 |
70 71
|
ifcld |
|- ( ph -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) |
73 |
72
|
3ad2ant1 |
|- ( ( ph /\ x e. ( A [,] B ) /\ k e. ( 0 ... M ) ) -> if ( k = 0 , ( P - 1 ) , P ) e. NN0 ) |
74 |
68 73
|
expcld |
|- ( ( ph /\ x e. ( A [,] B ) /\ k e. ( 0 ... M ) ) -> ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) e. CC ) |
75 |
|
nfv |
|- F/ x ( ph /\ k e. ( 0 ... M ) ) |
76 |
|
ssid |
|- CC C_ CC |
77 |
76
|
a1i |
|- ( ph -> CC C_ CC ) |
78 |
28 77
|
idcncfg |
|- ( ph -> ( x e. ( A [,] B ) |-> x ) e. ( ( A [,] B ) -cn-> CC ) ) |
79 |
78
|
adantr |
|- ( ( ph /\ k e. ( 0 ... M ) ) -> ( x e. ( A [,] B ) |-> x ) e. ( ( A [,] B ) -cn-> CC ) ) |
80 |
28
|
adantr |
|- ( ( ph /\ k e. ( 0 ... M ) ) -> ( A [,] B ) C_ CC ) |
81 |
66
|
adantl |
|- ( ( ph /\ k e. ( 0 ... M ) ) -> k e. CC ) |
82 |
76
|
a1i |
|- ( ( ph /\ k e. ( 0 ... M ) ) -> CC C_ CC ) |
83 |
80 81 82
|
constcncfg |
|- ( ( ph /\ k e. ( 0 ... M ) ) -> ( x e. ( A [,] B ) |-> k ) e. ( ( A [,] B ) -cn-> CC ) ) |
84 |
79 83
|
subcncf |
|- ( ( ph /\ k e. ( 0 ... M ) ) -> ( x e. ( A [,] B ) |-> ( x - k ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
85 |
|
expcncf |
|- ( if ( k = 0 , ( P - 1 ) , P ) e. NN0 -> ( y e. CC |-> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( CC -cn-> CC ) ) |
86 |
72 85
|
syl |
|- ( ph -> ( y e. CC |-> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( CC -cn-> CC ) ) |
87 |
86
|
adantr |
|- ( ( ph /\ k e. ( 0 ... M ) ) -> ( y e. CC |-> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( CC -cn-> CC ) ) |
88 |
|
oveq1 |
|- ( y = ( x - k ) -> ( y ^ if ( k = 0 , ( P - 1 ) , P ) ) = ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) |
89 |
75 84 87 82 88
|
cncfcompt2 |
|- ( ( ph /\ k e. ( 0 ... M ) ) -> ( x e. ( A [,] B ) |-> ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
90 |
28 63 74 89
|
fprodcncf |
|- ( ph -> ( x e. ( A [,] B ) |-> prod_ k e. ( 0 ... M ) ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
91 |
62 90
|
eqeltrd |
|- ( ph -> ( x e. ( A [,] B ) |-> ( F ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
92 |
54 91
|
mulcncf |
|- ( ph -> ( x e. ( A [,] B ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
93 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. L^1 ) |
94 |
6 7 92 93
|
syl3anc |
|- ( ph -> ( x e. ( A [,] B ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. L^1 ) |
95 |
9 11 24 94
|
iblss |
|- ( ph -> ( x e. ( A (,) B ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. L^1 ) |