Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem19.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
etransclem19.x |
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
3 |
|
etransclem19.p |
|- ( ph -> P e. NN ) |
4 |
|
etransclem19.1 |
|- H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
5 |
|
etransclem19.J |
|- ( ph -> J e. ( 0 ... M ) ) |
6 |
|
etransclem19.n |
|- ( ph -> N e. ZZ ) |
7 |
|
etransclem19.7 |
|- ( ph -> if ( J = 0 , ( P - 1 ) , P ) < N ) |
8 |
|
0red |
|- ( ph -> 0 e. RR ) |
9 |
6
|
zred |
|- ( ph -> N e. RR ) |
10 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
11 |
3 10
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
12 |
11
|
nn0red |
|- ( ph -> ( P - 1 ) e. RR ) |
13 |
3
|
nnred |
|- ( ph -> P e. RR ) |
14 |
12 13
|
ifcld |
|- ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. RR ) |
15 |
11
|
nn0ge0d |
|- ( ph -> 0 <_ ( P - 1 ) ) |
16 |
15
|
adantr |
|- ( ( ph /\ J = 0 ) -> 0 <_ ( P - 1 ) ) |
17 |
|
iftrue |
|- ( J = 0 -> if ( J = 0 , ( P - 1 ) , P ) = ( P - 1 ) ) |
18 |
17
|
eqcomd |
|- ( J = 0 -> ( P - 1 ) = if ( J = 0 , ( P - 1 ) , P ) ) |
19 |
18
|
adantl |
|- ( ( ph /\ J = 0 ) -> ( P - 1 ) = if ( J = 0 , ( P - 1 ) , P ) ) |
20 |
16 19
|
breqtrd |
|- ( ( ph /\ J = 0 ) -> 0 <_ if ( J = 0 , ( P - 1 ) , P ) ) |
21 |
3
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
22 |
21
|
nn0ge0d |
|- ( ph -> 0 <_ P ) |
23 |
22
|
adantr |
|- ( ( ph /\ -. J = 0 ) -> 0 <_ P ) |
24 |
|
iffalse |
|- ( -. J = 0 -> if ( J = 0 , ( P - 1 ) , P ) = P ) |
25 |
24
|
eqcomd |
|- ( -. J = 0 -> P = if ( J = 0 , ( P - 1 ) , P ) ) |
26 |
25
|
adantl |
|- ( ( ph /\ -. J = 0 ) -> P = if ( J = 0 , ( P - 1 ) , P ) ) |
27 |
23 26
|
breqtrd |
|- ( ( ph /\ -. J = 0 ) -> 0 <_ if ( J = 0 , ( P - 1 ) , P ) ) |
28 |
20 27
|
pm2.61dan |
|- ( ph -> 0 <_ if ( J = 0 , ( P - 1 ) , P ) ) |
29 |
8 14 9 28 7
|
lelttrd |
|- ( ph -> 0 < N ) |
30 |
8 9 29
|
ltled |
|- ( ph -> 0 <_ N ) |
31 |
|
elnn0z |
|- ( N e. NN0 <-> ( N e. ZZ /\ 0 <_ N ) ) |
32 |
6 30 31
|
sylanbrc |
|- ( ph -> N e. NN0 ) |
33 |
1 2 3 4 5 32
|
etransclem17 |
|- ( ph -> ( ( S Dn ( H ` J ) ) ` N ) = ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) ) |
34 |
7
|
iftrued |
|- ( ph -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) = 0 ) |
35 |
34
|
mpteq2dv |
|- ( ph -> ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) = ( x e. X |-> 0 ) ) |
36 |
33 35
|
eqtrd |
|- ( ph -> ( ( S Dn ( H ` J ) ) ` N ) = ( x e. X |-> 0 ) ) |