| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem19.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | etransclem19.x |  |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 3 |  | etransclem19.p |  |-  ( ph -> P e. NN ) | 
						
							| 4 |  | etransclem19.1 |  |-  H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 5 |  | etransclem19.J |  |-  ( ph -> J e. ( 0 ... M ) ) | 
						
							| 6 |  | etransclem19.n |  |-  ( ph -> N e. ZZ ) | 
						
							| 7 |  | etransclem19.7 |  |-  ( ph -> if ( J = 0 , ( P - 1 ) , P ) < N ) | 
						
							| 8 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 9 | 6 | zred |  |-  ( ph -> N e. RR ) | 
						
							| 10 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 11 | 3 10 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 12 | 11 | nn0red |  |-  ( ph -> ( P - 1 ) e. RR ) | 
						
							| 13 | 3 | nnred |  |-  ( ph -> P e. RR ) | 
						
							| 14 | 12 13 | ifcld |  |-  ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. RR ) | 
						
							| 15 | 11 | nn0ge0d |  |-  ( ph -> 0 <_ ( P - 1 ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ J = 0 ) -> 0 <_ ( P - 1 ) ) | 
						
							| 17 |  | iftrue |  |-  ( J = 0 -> if ( J = 0 , ( P - 1 ) , P ) = ( P - 1 ) ) | 
						
							| 18 | 17 | eqcomd |  |-  ( J = 0 -> ( P - 1 ) = if ( J = 0 , ( P - 1 ) , P ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ph /\ J = 0 ) -> ( P - 1 ) = if ( J = 0 , ( P - 1 ) , P ) ) | 
						
							| 20 | 16 19 | breqtrd |  |-  ( ( ph /\ J = 0 ) -> 0 <_ if ( J = 0 , ( P - 1 ) , P ) ) | 
						
							| 21 | 3 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 22 | 21 | nn0ge0d |  |-  ( ph -> 0 <_ P ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ -. J = 0 ) -> 0 <_ P ) | 
						
							| 24 |  | iffalse |  |-  ( -. J = 0 -> if ( J = 0 , ( P - 1 ) , P ) = P ) | 
						
							| 25 | 24 | eqcomd |  |-  ( -. J = 0 -> P = if ( J = 0 , ( P - 1 ) , P ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ph /\ -. J = 0 ) -> P = if ( J = 0 , ( P - 1 ) , P ) ) | 
						
							| 27 | 23 26 | breqtrd |  |-  ( ( ph /\ -. J = 0 ) -> 0 <_ if ( J = 0 , ( P - 1 ) , P ) ) | 
						
							| 28 | 20 27 | pm2.61dan |  |-  ( ph -> 0 <_ if ( J = 0 , ( P - 1 ) , P ) ) | 
						
							| 29 | 8 14 9 28 7 | lelttrd |  |-  ( ph -> 0 < N ) | 
						
							| 30 | 8 9 29 | ltled |  |-  ( ph -> 0 <_ N ) | 
						
							| 31 |  | elnn0z |  |-  ( N e. NN0 <-> ( N e. ZZ /\ 0 <_ N ) ) | 
						
							| 32 | 6 30 31 | sylanbrc |  |-  ( ph -> N e. NN0 ) | 
						
							| 33 | 1 2 3 4 5 32 | etransclem17 |  |-  ( ph -> ( ( S Dn ( H ` J ) ) ` N ) = ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) ) | 
						
							| 34 | 7 | iftrued |  |-  ( ph -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) = 0 ) | 
						
							| 35 | 34 | mpteq2dv |  |-  ( ph -> ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) = ( x e. X |-> 0 ) ) | 
						
							| 36 | 33 35 | eqtrd |  |-  ( ph -> ( ( S Dn ( H ` J ) ) ` N ) = ( x e. X |-> 0 ) ) |