| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem8.x |
|- ( ph -> X C_ CC ) |
| 2 |
|
etransclem8.p |
|- ( ph -> P e. NN ) |
| 3 |
|
etransclem8.f |
|- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
| 4 |
1
|
sselda |
|- ( ( ph /\ x e. X ) -> x e. CC ) |
| 5 |
2
|
adantr |
|- ( ( ph /\ x e. X ) -> P e. NN ) |
| 6 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
| 7 |
5 6
|
syl |
|- ( ( ph /\ x e. X ) -> ( P - 1 ) e. NN0 ) |
| 8 |
4 7
|
expcld |
|- ( ( ph /\ x e. X ) -> ( x ^ ( P - 1 ) ) e. CC ) |
| 9 |
|
fzfid |
|- ( ( ph /\ x e. X ) -> ( 1 ... M ) e. Fin ) |
| 10 |
4
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ j e. ( 1 ... M ) ) -> x e. CC ) |
| 11 |
|
elfzelz |
|- ( j e. ( 1 ... M ) -> j e. ZZ ) |
| 12 |
11
|
zcnd |
|- ( j e. ( 1 ... M ) -> j e. CC ) |
| 13 |
12
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ j e. ( 1 ... M ) ) -> j e. CC ) |
| 14 |
10 13
|
subcld |
|- ( ( ( ph /\ x e. X ) /\ j e. ( 1 ... M ) ) -> ( x - j ) e. CC ) |
| 15 |
2
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ j e. ( 1 ... M ) ) -> P e. NN0 ) |
| 17 |
14 16
|
expcld |
|- ( ( ( ph /\ x e. X ) /\ j e. ( 1 ... M ) ) -> ( ( x - j ) ^ P ) e. CC ) |
| 18 |
9 17
|
fprodcl |
|- ( ( ph /\ x e. X ) -> prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) e. CC ) |
| 19 |
8 18
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) e. CC ) |
| 20 |
19 3
|
fmptd |
|- ( ph -> F : X --> CC ) |