| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem8.x |  |-  ( ph -> X C_ CC ) | 
						
							| 2 |  | etransclem8.p |  |-  ( ph -> P e. NN ) | 
						
							| 3 |  | etransclem8.f |  |-  F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | 
						
							| 4 | 1 | sselda |  |-  ( ( ph /\ x e. X ) -> x e. CC ) | 
						
							| 5 | 2 | adantr |  |-  ( ( ph /\ x e. X ) -> P e. NN ) | 
						
							| 6 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( ph /\ x e. X ) -> ( P - 1 ) e. NN0 ) | 
						
							| 8 | 4 7 | expcld |  |-  ( ( ph /\ x e. X ) -> ( x ^ ( P - 1 ) ) e. CC ) | 
						
							| 9 |  | fzfid |  |-  ( ( ph /\ x e. X ) -> ( 1 ... M ) e. Fin ) | 
						
							| 10 | 4 | adantr |  |-  ( ( ( ph /\ x e. X ) /\ j e. ( 1 ... M ) ) -> x e. CC ) | 
						
							| 11 |  | elfzelz |  |-  ( j e. ( 1 ... M ) -> j e. ZZ ) | 
						
							| 12 | 11 | zcnd |  |-  ( j e. ( 1 ... M ) -> j e. CC ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( ph /\ x e. X ) /\ j e. ( 1 ... M ) ) -> j e. CC ) | 
						
							| 14 | 10 13 | subcld |  |-  ( ( ( ph /\ x e. X ) /\ j e. ( 1 ... M ) ) -> ( x - j ) e. CC ) | 
						
							| 15 | 2 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 16 | 15 | ad2antrr |  |-  ( ( ( ph /\ x e. X ) /\ j e. ( 1 ... M ) ) -> P e. NN0 ) | 
						
							| 17 | 14 16 | expcld |  |-  ( ( ( ph /\ x e. X ) /\ j e. ( 1 ... M ) ) -> ( ( x - j ) ^ P ) e. CC ) | 
						
							| 18 | 9 17 | fprodcl |  |-  ( ( ph /\ x e. X ) -> prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) e. CC ) | 
						
							| 19 | 8 18 | mulcld |  |-  ( ( ph /\ x e. X ) -> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) e. CC ) | 
						
							| 20 | 19 3 | fmptd |  |-  ( ph -> F : X --> CC ) |