| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem9.k |
|- ( ph -> K e. ZZ ) |
| 2 |
|
etransclem9.kn0 |
|- ( ph -> K =/= 0 ) |
| 3 |
|
etransclem9.m |
|- ( ph -> M e. ZZ ) |
| 4 |
|
etransclem9.n |
|- ( ph -> N e. ZZ ) |
| 5 |
|
etransclem9.km |
|- ( ph -> -. K || M ) |
| 6 |
|
etransclem9.kn |
|- ( ph -> K || N ) |
| 7 |
|
dvdsval2 |
|- ( ( K e. ZZ /\ K =/= 0 /\ M e. ZZ ) -> ( K || M <-> ( M / K ) e. ZZ ) ) |
| 8 |
1 2 3 7
|
syl3anc |
|- ( ph -> ( K || M <-> ( M / K ) e. ZZ ) ) |
| 9 |
5 8
|
mtbid |
|- ( ph -> -. ( M / K ) e. ZZ ) |
| 10 |
|
df-neg |
|- -u N = ( 0 - N ) |
| 11 |
10
|
a1i |
|- ( ( ph /\ ( M + N ) = 0 ) -> -u N = ( 0 - N ) ) |
| 12 |
|
oveq1 |
|- ( ( M + N ) = 0 -> ( ( M + N ) - N ) = ( 0 - N ) ) |
| 13 |
12
|
eqcomd |
|- ( ( M + N ) = 0 -> ( 0 - N ) = ( ( M + N ) - N ) ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ ( M + N ) = 0 ) -> ( 0 - N ) = ( ( M + N ) - N ) ) |
| 15 |
3
|
zcnd |
|- ( ph -> M e. CC ) |
| 16 |
4
|
zcnd |
|- ( ph -> N e. CC ) |
| 17 |
15 16
|
pncand |
|- ( ph -> ( ( M + N ) - N ) = M ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ ( M + N ) = 0 ) -> ( ( M + N ) - N ) = M ) |
| 19 |
11 14 18
|
3eqtrrd |
|- ( ( ph /\ ( M + N ) = 0 ) -> M = -u N ) |
| 20 |
19
|
oveq1d |
|- ( ( ph /\ ( M + N ) = 0 ) -> ( M / K ) = ( -u N / K ) ) |
| 21 |
|
dvdsnegb |
|- ( ( K e. ZZ /\ N e. ZZ ) -> ( K || N <-> K || -u N ) ) |
| 22 |
1 4 21
|
syl2anc |
|- ( ph -> ( K || N <-> K || -u N ) ) |
| 23 |
6 22
|
mpbid |
|- ( ph -> K || -u N ) |
| 24 |
4
|
znegcld |
|- ( ph -> -u N e. ZZ ) |
| 25 |
|
dvdsval2 |
|- ( ( K e. ZZ /\ K =/= 0 /\ -u N e. ZZ ) -> ( K || -u N <-> ( -u N / K ) e. ZZ ) ) |
| 26 |
1 2 24 25
|
syl3anc |
|- ( ph -> ( K || -u N <-> ( -u N / K ) e. ZZ ) ) |
| 27 |
23 26
|
mpbid |
|- ( ph -> ( -u N / K ) e. ZZ ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ ( M + N ) = 0 ) -> ( -u N / K ) e. ZZ ) |
| 29 |
20 28
|
eqeltrd |
|- ( ( ph /\ ( M + N ) = 0 ) -> ( M / K ) e. ZZ ) |
| 30 |
9 29
|
mtand |
|- ( ph -> -. ( M + N ) = 0 ) |
| 31 |
30
|
neqned |
|- ( ph -> ( M + N ) =/= 0 ) |