| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem10.n |  |-  ( ph -> P e. NN ) | 
						
							| 2 |  | etransclem10.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 3 |  | etransclem10.c |  |-  ( ph -> C : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 4 |  | etransclem10.j |  |-  ( ph -> J e. ZZ ) | 
						
							| 5 |  | 0zd |  |-  ( ( ph /\ ( P - 1 ) < ( C ` 0 ) ) -> 0 e. ZZ ) | 
						
							| 6 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 7 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 8 | 1 7 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 9 | 8 | nn0zd |  |-  ( ph -> ( P - 1 ) e. ZZ ) | 
						
							| 10 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 11 | 2 10 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 12 |  | eluzfz1 |  |-  ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ph -> 0 e. ( 0 ... M ) ) | 
						
							| 14 | 3 13 | ffvelcdmd |  |-  ( ph -> ( C ` 0 ) e. ( 0 ... N ) ) | 
						
							| 15 | 14 | elfzelzd |  |-  ( ph -> ( C ` 0 ) e. ZZ ) | 
						
							| 16 | 9 15 | zsubcld |  |-  ( ph -> ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) | 
						
							| 17 | 6 9 16 | 3jca |  |-  ( ph -> ( 0 e. ZZ /\ ( P - 1 ) e. ZZ /\ ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( 0 e. ZZ /\ ( P - 1 ) e. ZZ /\ ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) ) | 
						
							| 19 | 15 | zred |  |-  ( ph -> ( C ` 0 ) e. RR ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( C ` 0 ) e. RR ) | 
						
							| 21 | 8 | nn0red |  |-  ( ph -> ( P - 1 ) e. RR ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( P - 1 ) e. RR ) | 
						
							| 23 |  | simpr |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> -. ( P - 1 ) < ( C ` 0 ) ) | 
						
							| 24 | 20 22 23 | nltled |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( C ` 0 ) <_ ( P - 1 ) ) | 
						
							| 25 | 22 20 | subge0d |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( 0 <_ ( ( P - 1 ) - ( C ` 0 ) ) <-> ( C ` 0 ) <_ ( P - 1 ) ) ) | 
						
							| 26 | 24 25 | mpbird |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> 0 <_ ( ( P - 1 ) - ( C ` 0 ) ) ) | 
						
							| 27 |  | elfzle1 |  |-  ( ( C ` 0 ) e. ( 0 ... N ) -> 0 <_ ( C ` 0 ) ) | 
						
							| 28 | 14 27 | syl |  |-  ( ph -> 0 <_ ( C ` 0 ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> 0 <_ ( C ` 0 ) ) | 
						
							| 30 | 22 20 | subge02d |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( 0 <_ ( C ` 0 ) <-> ( ( P - 1 ) - ( C ` 0 ) ) <_ ( P - 1 ) ) ) | 
						
							| 31 | 29 30 | mpbid |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( P - 1 ) - ( C ` 0 ) ) <_ ( P - 1 ) ) | 
						
							| 32 | 18 26 31 | jca32 |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( 0 e. ZZ /\ ( P - 1 ) e. ZZ /\ ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) /\ ( 0 <_ ( ( P - 1 ) - ( C ` 0 ) ) /\ ( ( P - 1 ) - ( C ` 0 ) ) <_ ( P - 1 ) ) ) ) | 
						
							| 33 |  | elfz2 |  |-  ( ( ( P - 1 ) - ( C ` 0 ) ) e. ( 0 ... ( P - 1 ) ) <-> ( ( 0 e. ZZ /\ ( P - 1 ) e. ZZ /\ ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) /\ ( 0 <_ ( ( P - 1 ) - ( C ` 0 ) ) /\ ( ( P - 1 ) - ( C ` 0 ) ) <_ ( P - 1 ) ) ) ) | 
						
							| 34 | 32 33 | sylibr |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( P - 1 ) - ( C ` 0 ) ) e. ( 0 ... ( P - 1 ) ) ) | 
						
							| 35 |  | permnn |  |-  ( ( ( P - 1 ) - ( C ` 0 ) ) e. ( 0 ... ( P - 1 ) ) -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) e. NN ) | 
						
							| 36 | 34 35 | syl |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) e. NN ) | 
						
							| 37 | 36 | nnzd |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) e. ZZ ) | 
						
							| 38 | 4 | adantr |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> J e. ZZ ) | 
						
							| 39 | 16 | adantr |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) | 
						
							| 40 |  | elnn0z |  |-  ( ( ( P - 1 ) - ( C ` 0 ) ) e. NN0 <-> ( ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ /\ 0 <_ ( ( P - 1 ) - ( C ` 0 ) ) ) ) | 
						
							| 41 | 39 26 40 | sylanbrc |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( P - 1 ) - ( C ` 0 ) ) e. NN0 ) | 
						
							| 42 |  | zexpcl |  |-  ( ( J e. ZZ /\ ( ( P - 1 ) - ( C ` 0 ) ) e. NN0 ) -> ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) e. ZZ ) | 
						
							| 43 | 38 41 42 | syl2anc |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) e. ZZ ) | 
						
							| 44 | 37 43 | zmulcld |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) e. ZZ ) | 
						
							| 45 | 5 44 | ifclda |  |-  ( ph -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) e. ZZ ) |