| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem10.n |
|- ( ph -> P e. NN ) |
| 2 |
|
etransclem10.m |
|- ( ph -> M e. NN0 ) |
| 3 |
|
etransclem10.c |
|- ( ph -> C : ( 0 ... M ) --> ( 0 ... N ) ) |
| 4 |
|
etransclem10.j |
|- ( ph -> J e. ZZ ) |
| 5 |
|
0zd |
|- ( ( ph /\ ( P - 1 ) < ( C ` 0 ) ) -> 0 e. ZZ ) |
| 6 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 7 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
| 8 |
1 7
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
| 9 |
8
|
nn0zd |
|- ( ph -> ( P - 1 ) e. ZZ ) |
| 10 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 11 |
2 10
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
| 12 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
| 13 |
11 12
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
| 14 |
3 13
|
ffvelcdmd |
|- ( ph -> ( C ` 0 ) e. ( 0 ... N ) ) |
| 15 |
14
|
elfzelzd |
|- ( ph -> ( C ` 0 ) e. ZZ ) |
| 16 |
9 15
|
zsubcld |
|- ( ph -> ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) |
| 17 |
6 9 16
|
3jca |
|- ( ph -> ( 0 e. ZZ /\ ( P - 1 ) e. ZZ /\ ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( 0 e. ZZ /\ ( P - 1 ) e. ZZ /\ ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) ) |
| 19 |
15
|
zred |
|- ( ph -> ( C ` 0 ) e. RR ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( C ` 0 ) e. RR ) |
| 21 |
8
|
nn0red |
|- ( ph -> ( P - 1 ) e. RR ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( P - 1 ) e. RR ) |
| 23 |
|
simpr |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> -. ( P - 1 ) < ( C ` 0 ) ) |
| 24 |
20 22 23
|
nltled |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( C ` 0 ) <_ ( P - 1 ) ) |
| 25 |
22 20
|
subge0d |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( 0 <_ ( ( P - 1 ) - ( C ` 0 ) ) <-> ( C ` 0 ) <_ ( P - 1 ) ) ) |
| 26 |
24 25
|
mpbird |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> 0 <_ ( ( P - 1 ) - ( C ` 0 ) ) ) |
| 27 |
|
elfzle1 |
|- ( ( C ` 0 ) e. ( 0 ... N ) -> 0 <_ ( C ` 0 ) ) |
| 28 |
14 27
|
syl |
|- ( ph -> 0 <_ ( C ` 0 ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> 0 <_ ( C ` 0 ) ) |
| 30 |
22 20
|
subge02d |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( 0 <_ ( C ` 0 ) <-> ( ( P - 1 ) - ( C ` 0 ) ) <_ ( P - 1 ) ) ) |
| 31 |
29 30
|
mpbid |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( P - 1 ) - ( C ` 0 ) ) <_ ( P - 1 ) ) |
| 32 |
18 26 31
|
jca32 |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( 0 e. ZZ /\ ( P - 1 ) e. ZZ /\ ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) /\ ( 0 <_ ( ( P - 1 ) - ( C ` 0 ) ) /\ ( ( P - 1 ) - ( C ` 0 ) ) <_ ( P - 1 ) ) ) ) |
| 33 |
|
elfz2 |
|- ( ( ( P - 1 ) - ( C ` 0 ) ) e. ( 0 ... ( P - 1 ) ) <-> ( ( 0 e. ZZ /\ ( P - 1 ) e. ZZ /\ ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) /\ ( 0 <_ ( ( P - 1 ) - ( C ` 0 ) ) /\ ( ( P - 1 ) - ( C ` 0 ) ) <_ ( P - 1 ) ) ) ) |
| 34 |
32 33
|
sylibr |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( P - 1 ) - ( C ` 0 ) ) e. ( 0 ... ( P - 1 ) ) ) |
| 35 |
|
permnn |
|- ( ( ( P - 1 ) - ( C ` 0 ) ) e. ( 0 ... ( P - 1 ) ) -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) e. NN ) |
| 36 |
34 35
|
syl |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) e. NN ) |
| 37 |
36
|
nnzd |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) e. ZZ ) |
| 38 |
4
|
adantr |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> J e. ZZ ) |
| 39 |
16
|
adantr |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) |
| 40 |
|
elnn0z |
|- ( ( ( P - 1 ) - ( C ` 0 ) ) e. NN0 <-> ( ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ /\ 0 <_ ( ( P - 1 ) - ( C ` 0 ) ) ) ) |
| 41 |
39 26 40
|
sylanbrc |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( P - 1 ) - ( C ` 0 ) ) e. NN0 ) |
| 42 |
|
zexpcl |
|- ( ( J e. ZZ /\ ( ( P - 1 ) - ( C ` 0 ) ) e. NN0 ) -> ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) e. ZZ ) |
| 43 |
38 41 42
|
syl2anc |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) e. ZZ ) |
| 44 |
37 43
|
zmulcld |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) e. ZZ ) |
| 45 |
5 44
|
ifclda |
|- ( ph -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) e. ZZ ) |