| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( n = m -> ( 0 ... n ) = ( 0 ... m ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( n = m -> ( ( 0 ... n ) ^m ( 0 ... M ) ) = ( ( 0 ... m ) ^m ( 0 ... M ) ) ) | 
						
							| 3 | 2 | rabeqdv |  |-  ( n = m -> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } = { c e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) | 
						
							| 4 |  | fveq2 |  |-  ( j = k -> ( c ` j ) = ( c ` k ) ) | 
						
							| 5 | 4 | cbvsumv |  |-  sum_ j e. ( 0 ... M ) ( c ` j ) = sum_ k e. ( 0 ... M ) ( c ` k ) | 
						
							| 6 |  | fveq1 |  |-  ( c = d -> ( c ` k ) = ( d ` k ) ) | 
						
							| 7 | 6 | sumeq2sdv |  |-  ( c = d -> sum_ k e. ( 0 ... M ) ( c ` k ) = sum_ k e. ( 0 ... M ) ( d ` k ) ) | 
						
							| 8 | 5 7 | eqtrid |  |-  ( c = d -> sum_ j e. ( 0 ... M ) ( c ` j ) = sum_ k e. ( 0 ... M ) ( d ` k ) ) | 
						
							| 9 | 8 | eqeq1d |  |-  ( c = d -> ( sum_ j e. ( 0 ... M ) ( c ` j ) = n <-> sum_ k e. ( 0 ... M ) ( d ` k ) = n ) ) | 
						
							| 10 | 9 | cbvrabv |  |-  { c e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } = { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = n } | 
						
							| 11 |  | eqeq2 |  |-  ( n = m -> ( sum_ k e. ( 0 ... M ) ( d ` k ) = n <-> sum_ k e. ( 0 ... M ) ( d ` k ) = m ) ) | 
						
							| 12 | 11 | rabbidv |  |-  ( n = m -> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = n } = { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) | 
						
							| 13 | 10 12 | eqtrid |  |-  ( n = m -> { c e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } = { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) | 
						
							| 14 | 3 13 | eqtrd |  |-  ( n = m -> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } = { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) | 
						
							| 15 | 14 | cbvmptv |  |-  ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) = ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) |