| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 0 ... 𝑛 )  =  ( 0 ... 𝑚 ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  =  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 3 | 2 | rabeqdv | ⊢ ( 𝑛  =  𝑚  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 }  =  { 𝑐  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 5 | 4 | cbvsumv | ⊢ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 ) | 
						
							| 6 |  | fveq1 | ⊢ ( 𝑐  =  𝑑  →  ( 𝑐 ‘ 𝑘 )  =  ( 𝑑 ‘ 𝑘 ) ) | 
						
							| 7 | 6 | sumeq2sdv | ⊢ ( 𝑐  =  𝑑  →  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑘 )  =  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) ) | 
						
							| 8 | 5 7 | eqtrid | ⊢ ( 𝑐  =  𝑑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) ) | 
						
							| 9 | 8 | eqeq1d | ⊢ ( 𝑐  =  𝑑  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛  ↔  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑛 ) ) | 
						
							| 10 | 9 | cbvrabv | ⊢ { 𝑐  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 }  =  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑛 } | 
						
							| 11 |  | eqeq2 | ⊢ ( 𝑛  =  𝑚  →  ( Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑛  ↔  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 ) ) | 
						
							| 12 | 11 | rabbidv | ⊢ ( 𝑛  =  𝑚  →  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑛 }  =  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) | 
						
							| 13 | 10 12 | eqtrid | ⊢ ( 𝑛  =  𝑚  →  { 𝑐  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 }  =  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) | 
						
							| 14 | 3 13 | eqtrd | ⊢ ( 𝑛  =  𝑚  →  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 }  =  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) | 
						
							| 15 | 14 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } )  =  ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) |