Metamath Proof Explorer


Theorem etransclem10

Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem10.n φP
etransclem10.m φM0
etransclem10.c φC:0M0N
etransclem10.j φJ
Assertion etransclem10 φifP1<C00P1!P-1-C0!JP-1-C0

Proof

Step Hyp Ref Expression
1 etransclem10.n φP
2 etransclem10.m φM0
3 etransclem10.c φC:0M0N
4 etransclem10.j φJ
5 0zd φP1<C00
6 0zd φ0
7 nnm1nn0 PP10
8 1 7 syl φP10
9 8 nn0zd φP1
10 nn0uz 0=0
11 2 10 eleqtrdi φM0
12 eluzfz1 M000M
13 11 12 syl φ00M
14 3 13 ffvelcdmd φC00N
15 14 elfzelzd φC0
16 9 15 zsubcld φP-1-C0
17 6 9 16 3jca φ0P1P-1-C0
18 17 adantr φ¬P1<C00P1P-1-C0
19 15 zred φC0
20 19 adantr φ¬P1<C0C0
21 8 nn0red φP1
22 21 adantr φ¬P1<C0P1
23 simpr φ¬P1<C0¬P1<C0
24 20 22 23 nltled φ¬P1<C0C0P1
25 22 20 subge0d φ¬P1<C00P-1-C0C0P1
26 24 25 mpbird φ¬P1<C00P-1-C0
27 elfzle1 C00N0C0
28 14 27 syl φ0C0
29 28 adantr φ¬P1<C00C0
30 22 20 subge02d φ¬P1<C00C0P-1-C0P1
31 29 30 mpbid φ¬P1<C0P-1-C0P1
32 18 26 31 jca32 φ¬P1<C00P1P-1-C00P-1-C0P-1-C0P1
33 elfz2 P-1-C00P10P1P-1-C00P-1-C0P-1-C0P1
34 32 33 sylibr φ¬P1<C0P-1-C00P1
35 permnn P-1-C00P1P1!P-1-C0!
36 34 35 syl φ¬P1<C0P1!P-1-C0!
37 36 nnzd φ¬P1<C0P1!P-1-C0!
38 4 adantr φ¬P1<C0J
39 16 adantr φ¬P1<C0P-1-C0
40 elnn0z P-1-C00P-1-C00P-1-C0
41 39 26 40 sylanbrc φ¬P1<C0P-1-C00
42 zexpcl JP-1-C00JP-1-C0
43 38 41 42 syl2anc φ¬P1<C0JP-1-C0
44 37 43 zmulcld φ¬P1<C0P1!P-1-C0!JP-1-C0
45 5 44 ifclda φifP1<C00P1!P-1-C0!JP-1-C0