Metamath Proof Explorer


Theorem etransclem8

Description: F is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem8.x φX
etransclem8.p φP
etransclem8.f F=xXxP1j=1MxjP
Assertion etransclem8 φF:X

Proof

Step Hyp Ref Expression
1 etransclem8.x φX
2 etransclem8.p φP
3 etransclem8.f F=xXxP1j=1MxjP
4 1 sselda φxXx
5 2 adantr φxXP
6 nnm1nn0 PP10
7 5 6 syl φxXP10
8 4 7 expcld φxXxP1
9 fzfid φxX1MFin
10 4 adantr φxXj1Mx
11 elfzelz j1Mj
12 11 zcnd j1Mj
13 12 adantl φxXj1Mj
14 10 13 subcld φxXj1Mxj
15 2 nnnn0d φP0
16 15 ad2antrr φxXj1MP0
17 14 16 expcld φxXj1MxjP
18 9 17 fprodcl φxXj=1MxjP
19 8 18 mulcld φxXxP1j=1MxjP
20 19 3 fmptd φF:X