| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem18.s | ⊢ ( 𝜑  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | etransclem18.x | ⊢ ( 𝜑  →  ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 3 |  | etransclem18.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 4 |  | etransclem18.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 |  | etransclem18.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 6 |  | etransclem18.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 7 |  | etransclem18.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 8 |  | ioossicc | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 10 |  | ioombl | ⊢ ( 𝐴 (,) 𝐵 )  ∈  dom  vol | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ∈  dom  vol ) | 
						
							| 12 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 13 | 12 | recni | ⊢ e  ∈  ℂ | 
						
							| 14 | 13 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  e  ∈  ℂ ) | 
						
							| 15 | 6 7 | iccssred | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 16 | 15 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 17 | 16 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 18 | 17 | negcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  - 𝑥  ∈  ℂ ) | 
						
							| 19 | 14 18 | cxpcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( e ↑𝑐 - 𝑥 )  ∈  ℂ ) | 
						
							| 20 | 1 2 | dvdmsscn | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 21 | 20 3 5 | etransclem8 | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 23 | 22 16 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 24 | 19 23 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 25 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) )  =  ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) ) | 
						
							| 26 |  | oveq2 | ⊢ ( 𝑦  =  - 𝑥  →  ( e ↑𝑐 𝑦 )  =  ( e ↑𝑐 - 𝑥 ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  𝑦  =  - 𝑥 )  →  ( e ↑𝑐 𝑦 )  =  ( e ↑𝑐 - 𝑥 ) ) | 
						
							| 28 | 15 20 | sstrd | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℂ ) | 
						
							| 29 | 28 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 30 | 29 | negcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  - 𝑥  ∈  ℂ ) | 
						
							| 31 | 13 | a1i | ⊢ ( 𝑥  ∈  ℂ  →  e  ∈  ℂ ) | 
						
							| 32 |  | negcl | ⊢ ( 𝑥  ∈  ℂ  →  - 𝑥  ∈  ℂ ) | 
						
							| 33 | 31 32 | cxpcld | ⊢ ( 𝑥  ∈  ℂ  →  ( e ↑𝑐 - 𝑥 )  ∈  ℂ ) | 
						
							| 34 | 29 33 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( e ↑𝑐 - 𝑥 )  ∈  ℂ ) | 
						
							| 35 | 25 27 30 34 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 )  =  ( e ↑𝑐 - 𝑥 ) ) | 
						
							| 36 | 35 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( e ↑𝑐 - 𝑥 )  =  ( ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) ) | 
						
							| 37 | 36 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( e ↑𝑐 - 𝑥 ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) ) ) | 
						
							| 38 |  | epr | ⊢ e  ∈  ℝ+ | 
						
							| 39 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 40 | 39 | a1i | ⊢ ( e  ∈  ℝ+  →  -∞  ∈  ℝ* ) | 
						
							| 41 |  | 0red | ⊢ ( e  ∈  ℝ+  →  0  ∈  ℝ ) | 
						
							| 42 |  | rpxr | ⊢ ( e  ∈  ℝ+  →  e  ∈  ℝ* ) | 
						
							| 43 |  | rpgt0 | ⊢ ( e  ∈  ℝ+  →  0  <  e ) | 
						
							| 44 | 40 41 42 43 | gtnelioc | ⊢ ( e  ∈  ℝ+  →  ¬  e  ∈  ( -∞ (,] 0 ) ) | 
						
							| 45 | 38 44 | ax-mp | ⊢ ¬  e  ∈  ( -∞ (,] 0 ) | 
						
							| 46 |  | eldif | ⊢ ( e  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  ↔  ( e  ∈  ℂ  ∧  ¬  e  ∈  ( -∞ (,] 0 ) ) ) | 
						
							| 47 | 13 45 46 | mpbir2an | ⊢ e  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 48 |  | cxpcncf2 | ⊢ ( e  ∈  ( ℂ  ∖  ( -∞ (,] 0 ) )  →  ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 49 | 47 48 | mp1i | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 50 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  - 𝑥 )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  - 𝑥 ) | 
						
							| 51 | 50 | negcncf | ⊢ ( ( 𝐴 [,] 𝐵 )  ⊆  ℂ  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  - 𝑥 )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 52 | 28 51 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  - 𝑥 )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 53 | 49 52 | cncfmpt1f | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( 𝑦  ∈  ℂ  ↦  ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 54 | 37 53 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( e ↑𝑐 - 𝑥 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 55 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 56 | 55 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ℝ  ⊆  ℂ ) | 
						
							| 57 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 58 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 59 |  | etransclem6 | ⊢ ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) )  =  ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  𝑘 ) ↑ 𝑃 ) ) ) | 
						
							| 60 | 5 59 | eqtri | ⊢ 𝐹  =  ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  𝑘 ) ↑ 𝑃 ) ) ) | 
						
							| 61 | 56 57 58 60 16 | etransclem13 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  =  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 62 | 61 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 63 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 64 | 17 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 65 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... 𝑀 )  →  𝑘  ∈  ℤ ) | 
						
							| 66 | 65 | zcnd | ⊢ ( 𝑘  ∈  ( 0 ... 𝑀 )  →  𝑘  ∈  ℂ ) | 
						
							| 67 | 66 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 68 | 64 67 | subcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  −  𝑘 )  ∈  ℂ ) | 
						
							| 69 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 70 | 3 69 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 71 | 3 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 72 | 70 71 | ifcld | ⊢ ( 𝜑  →  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 73 | 72 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 74 | 68 73 | expcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑥  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  ∈  ℂ ) | 
						
							| 75 |  | nfv | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 76 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 77 | 76 | a1i | ⊢ ( 𝜑  →  ℂ  ⊆  ℂ ) | 
						
							| 78 | 28 77 | idcncfg | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  𝑥 )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  𝑥 )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 80 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℂ ) | 
						
							| 81 | 66 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 82 | 76 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ℂ  ⊆  ℂ ) | 
						
							| 83 | 80 81 82 | constcncfg | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  𝑘 )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 84 | 79 83 | subcncf | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝑥  −  𝑘 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 85 |  | expcncf | ⊢ ( if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 86 | 72 85 | syl | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑦  ∈  ℂ  ↦  ( 𝑦 ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 88 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑥  −  𝑘 )  →  ( 𝑦 ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  =  ( ( 𝑥  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 89 | 75 84 87 82 88 | cncfcompt2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( 𝑥  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 90 | 28 63 74 89 | fprodcncf | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝑥  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 91 | 62 90 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 92 | 54 91 | mulcncf | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 93 |  | cniccibl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  ∈  𝐿1 ) | 
						
							| 94 | 6 7 92 93 | syl3anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  ∈  𝐿1 ) | 
						
							| 95 | 9 11 24 94 | iblss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( e ↑𝑐 - 𝑥 )  ·  ( 𝐹 ‘ 𝑥 ) ) )  ∈  𝐿1 ) |