Metamath Proof Explorer


Theorem cncfcompt2

Description: Composition of continuous functions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses cncfcompt2.xph 𝑥 𝜑
cncfcompt2.ab ( 𝜑 → ( 𝑥𝐴𝑅 ) ∈ ( 𝐴cn𝐵 ) )
cncfcompt2.cd ( 𝜑 → ( 𝑦𝐶𝑆 ) ∈ ( 𝐶cn𝐸 ) )
cncfcompt2.bc ( 𝜑𝐵𝐶 )
cncfcompt2.st ( 𝑦 = 𝑅𝑆 = 𝑇 )
Assertion cncfcompt2 ( 𝜑 → ( 𝑥𝐴𝑇 ) ∈ ( 𝐴cn𝐸 ) )

Proof

Step Hyp Ref Expression
1 cncfcompt2.xph 𝑥 𝜑
2 cncfcompt2.ab ( 𝜑 → ( 𝑥𝐴𝑅 ) ∈ ( 𝐴cn𝐵 ) )
3 cncfcompt2.cd ( 𝜑 → ( 𝑦𝐶𝑆 ) ∈ ( 𝐶cn𝐸 ) )
4 cncfcompt2.bc ( 𝜑𝐵𝐶 )
5 cncfcompt2.st ( 𝑦 = 𝑅𝑆 = 𝑇 )
6 4 adantr ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
7 cncff ( ( 𝑥𝐴𝑅 ) ∈ ( 𝐴cn𝐵 ) → ( 𝑥𝐴𝑅 ) : 𝐴𝐵 )
8 2 7 syl ( 𝜑 → ( 𝑥𝐴𝑅 ) : 𝐴𝐵 )
9 8 fvmptelrn ( ( 𝜑𝑥𝐴 ) → 𝑅𝐵 )
10 6 9 sseldd ( ( 𝜑𝑥𝐴 ) → 𝑅𝐶 )
11 10 ex ( 𝜑 → ( 𝑥𝐴𝑅𝐶 ) )
12 1 11 ralrimi ( 𝜑 → ∀ 𝑥𝐴 𝑅𝐶 )
13 eqidd ( 𝜑 → ( 𝑥𝐴𝑅 ) = ( 𝑥𝐴𝑅 ) )
14 eqidd ( 𝜑 → ( 𝑦𝐶𝑆 ) = ( 𝑦𝐶𝑆 ) )
15 12 13 14 5 fmptcof ( 𝜑 → ( ( 𝑦𝐶𝑆 ) ∘ ( 𝑥𝐴𝑅 ) ) = ( 𝑥𝐴𝑇 ) )
16 15 eqcomd ( 𝜑 → ( 𝑥𝐴𝑇 ) = ( ( 𝑦𝐶𝑆 ) ∘ ( 𝑥𝐴𝑅 ) ) )
17 cncfrss ( ( 𝑦𝐶𝑆 ) ∈ ( 𝐶cn𝐸 ) → 𝐶 ⊆ ℂ )
18 3 17 syl ( 𝜑𝐶 ⊆ ℂ )
19 cncfss ( ( 𝐵𝐶𝐶 ⊆ ℂ ) → ( 𝐴cn𝐵 ) ⊆ ( 𝐴cn𝐶 ) )
20 4 18 19 syl2anc ( 𝜑 → ( 𝐴cn𝐵 ) ⊆ ( 𝐴cn𝐶 ) )
21 20 2 sseldd ( 𝜑 → ( 𝑥𝐴𝑅 ) ∈ ( 𝐴cn𝐶 ) )
22 21 3 cncfco ( 𝜑 → ( ( 𝑦𝐶𝑆 ) ∘ ( 𝑥𝐴𝑅 ) ) ∈ ( 𝐴cn𝐸 ) )
23 16 22 eqeltrd ( 𝜑 → ( 𝑥𝐴𝑇 ) ∈ ( 𝐴cn𝐸 ) )