| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem13.x |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
| 2 |
|
etransclem13.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 3 |
|
etransclem13.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 4 |
|
etransclem13.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
| 5 |
|
etransclem13.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
| 6 |
|
eqid |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
| 7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) ‘ 𝑗 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 8 |
1 2 3 4 6 7
|
etransclem4 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 10 |
|
cnex |
⊢ ℂ ∈ V |
| 11 |
10
|
ssex |
⊢ ( 𝑋 ⊆ ℂ → 𝑋 ∈ V ) |
| 12 |
|
mptexg |
⊢ ( 𝑋 ∈ V → ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ V ) |
| 13 |
1 11 12
|
3syl |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ V ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ V ) |
| 15 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 − 𝑗 ) = ( 𝑦 − 𝑗 ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
| 17 |
16
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
| 18 |
17
|
mpteq2i |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
| 19 |
18
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ V ) → ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) ‘ 𝑗 ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
| 20 |
9 14 19
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) ‘ 𝑗 ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
| 21 |
20
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑌 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) ‘ 𝑗 ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
| 22 |
|
simpr |
⊢ ( ( 𝑥 = 𝑌 ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) |
| 23 |
|
simpl |
⊢ ( ( 𝑥 = 𝑌 ∧ 𝑦 = 𝑥 ) → 𝑥 = 𝑌 ) |
| 24 |
22 23
|
eqtrd |
⊢ ( ( 𝑥 = 𝑌 ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑌 ) |
| 25 |
|
oveq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 − 𝑗 ) = ( 𝑌 − 𝑗 ) ) |
| 26 |
25
|
oveq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑌 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
| 27 |
24 26
|
syl |
⊢ ( ( 𝑥 = 𝑌 ∧ 𝑦 = 𝑥 ) → ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑌 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
| 28 |
27
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑌 ) ∧ 𝑦 = 𝑥 ) → ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑌 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
| 29 |
28
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑌 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑦 = 𝑥 ) → ( ( 𝑦 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑌 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
| 30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → 𝑥 = 𝑌 ) |
| 31 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → 𝑌 ∈ 𝑋 ) |
| 32 |
30 31
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → 𝑥 ∈ 𝑋 ) |
| 33 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑌 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑥 ∈ 𝑋 ) |
| 34 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑌 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑌 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ V ) |
| 35 |
21 29 33 34
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑌 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) ‘ 𝑗 ) ‘ 𝑥 ) = ( ( 𝑌 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
| 36 |
35
|
prodeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) ‘ 𝑗 ) ‘ 𝑥 ) = ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑌 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
| 37 |
|
prodex |
⊢ ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑌 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ V |
| 38 |
37
|
a1i |
⊢ ( 𝜑 → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑌 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ V ) |
| 39 |
8 36 5 38
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) = ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑌 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |