Metamath Proof Explorer


Theorem etransclem17

Description: The N -th derivative of H . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem17.s φ S
etransclem17.x φ X TopOpen fld 𝑡 S
etransclem17.p φ P
etransclem17.1 H = j 0 M x X x j if j = 0 P 1 P
etransclem17.J φ J 0 M
etransclem17.n φ N 0
Assertion etransclem17 φ S D n H J N = x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N

Proof

Step Hyp Ref Expression
1 etransclem17.s φ S
2 etransclem17.x φ X TopOpen fld 𝑡 S
3 etransclem17.p φ P
4 etransclem17.1 H = j 0 M x X x j if j = 0 P 1 P
5 etransclem17.J φ J 0 M
6 etransclem17.n φ N 0
7 1 2 dvdmsscn φ X
8 7 sselda φ x X x
9 8 adantlr φ j 0 M x X x
10 elfzelz j 0 M j
11 10 zcnd j 0 M j
12 11 ad2antlr φ j 0 M x X j
13 9 12 negsubd φ j 0 M x X x + j = x j
14 13 eqcomd φ j 0 M x X x j = x + j
15 14 oveq1d φ j 0 M x X x j if j = 0 P 1 P = x + j if j = 0 P 1 P
16 15 mpteq2dva φ j 0 M x X x j if j = 0 P 1 P = x X x + j if j = 0 P 1 P
17 16 mpteq2dva φ j 0 M x X x j if j = 0 P 1 P = j 0 M x X x + j if j = 0 P 1 P
18 4 17 eqtrid φ H = j 0 M x X x + j if j = 0 P 1 P
19 negeq j = J j = J
20 19 oveq2d j = J x + j = x + -J
21 eqeq1 j = J j = 0 J = 0
22 21 ifbid j = J if j = 0 P 1 P = if J = 0 P 1 P
23 20 22 oveq12d j = J x + j if j = 0 P 1 P = x + -J if J = 0 P 1 P
24 23 mpteq2dv j = J x X x + j if j = 0 P 1 P = x X x + -J if J = 0 P 1 P
25 24 adantl φ j = J x X x + j if j = 0 P 1 P = x X x + -J if J = 0 P 1 P
26 mptexg X TopOpen fld 𝑡 S x X x + -J if J = 0 P 1 P V
27 2 26 syl φ x X x + -J if J = 0 P 1 P V
28 18 25 5 27 fvmptd φ H J = x X x + -J if J = 0 P 1 P
29 28 oveq2d φ S D n H J = S D n x X x + -J if J = 0 P 1 P
30 29 fveq1d φ S D n H J N = S D n x X x + -J if J = 0 P 1 P N
31 elfzelz J 0 M J
32 31 zcnd J 0 M J
33 5 32 syl φ J
34 33 negcld φ J
35 nnm1nn0 P P 1 0
36 3 35 syl φ P 1 0
37 3 nnnn0d φ P 0
38 36 37 ifcld φ if J = 0 P 1 P 0
39 eqid x X x + -J if J = 0 P 1 P = x X x + -J if J = 0 P 1 P
40 1 2 34 38 39 dvnxpaek φ N 0 S D n x X x + -J if J = 0 P 1 P N = x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x + -J if J = 0 P 1 P N
41 6 40 mpdan φ S D n x X x + -J if J = 0 P 1 P N = x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x + -J if J = 0 P 1 P N
42 33 adantr φ x X J
43 8 42 negsubd φ x X x + -J = x J
44 43 oveq1d φ x X x + -J if J = 0 P 1 P N = x J if J = 0 P 1 P N
45 44 oveq2d φ x X if J = 0 P 1 P ! if J = 0 P 1 P N ! x + -J if J = 0 P 1 P N = if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N
46 45 ifeq2d φ x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x + -J if J = 0 P 1 P N = if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N
47 46 mpteq2dva φ x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x + -J if J = 0 P 1 P N = x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N
48 30 41 47 3eqtrd φ S D n H J N = x X if if J = 0 P 1 P < N 0 if J = 0 P 1 P ! if J = 0 P 1 P N ! x J if J = 0 P 1 P N