Description: The N -th derivative of H . (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | etransclem17.s | |
|
etransclem17.x | |
||
etransclem17.p | |
||
etransclem17.1 | |
||
etransclem17.J | |
||
etransclem17.n | |
||
Assertion | etransclem17 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem17.s | |
|
2 | etransclem17.x | |
|
3 | etransclem17.p | |
|
4 | etransclem17.1 | |
|
5 | etransclem17.J | |
|
6 | etransclem17.n | |
|
7 | 1 2 | dvdmsscn | |
8 | 7 | sselda | |
9 | 8 | adantlr | |
10 | elfzelz | |
|
11 | 10 | zcnd | |
12 | 11 | ad2antlr | |
13 | 9 12 | negsubd | |
14 | 13 | eqcomd | |
15 | 14 | oveq1d | |
16 | 15 | mpteq2dva | |
17 | 16 | mpteq2dva | |
18 | 4 17 | eqtrid | |
19 | negeq | |
|
20 | 19 | oveq2d | |
21 | eqeq1 | |
|
22 | 21 | ifbid | |
23 | 20 22 | oveq12d | |
24 | 23 | mpteq2dv | |
25 | 24 | adantl | |
26 | mptexg | |
|
27 | 2 26 | syl | |
28 | 18 25 5 27 | fvmptd | |
29 | 28 | oveq2d | |
30 | 29 | fveq1d | |
31 | elfzelz | |
|
32 | 31 | zcnd | |
33 | 5 32 | syl | |
34 | 33 | negcld | |
35 | nnm1nn0 | |
|
36 | 3 35 | syl | |
37 | 3 | nnnn0d | |
38 | 36 37 | ifcld | |
39 | eqid | |
|
40 | 1 2 34 38 39 | dvnxpaek | |
41 | 6 40 | mpdan | |
42 | 33 | adantr | |
43 | 8 42 | negsubd | |
44 | 43 | oveq1d | |
45 | 44 | oveq2d | |
46 | 45 | ifeq2d | |
47 | 46 | mpteq2dva | |
48 | 30 41 47 | 3eqtrd | |