Metamath Proof Explorer


Theorem etransclem17

Description: The N -th derivative of H . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem17.s φS
etransclem17.x φXTopOpenfld𝑡S
etransclem17.p φP
etransclem17.1 H=j0MxXxjifj=0P1P
etransclem17.J φJ0M
etransclem17.n φN0
Assertion etransclem17 φSDnHJN=xXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN

Proof

Step Hyp Ref Expression
1 etransclem17.s φS
2 etransclem17.x φXTopOpenfld𝑡S
3 etransclem17.p φP
4 etransclem17.1 H=j0MxXxjifj=0P1P
5 etransclem17.J φJ0M
6 etransclem17.n φN0
7 1 2 dvdmsscn φX
8 7 sselda φxXx
9 8 adantlr φj0MxXx
10 elfzelz j0Mj
11 10 zcnd j0Mj
12 11 ad2antlr φj0MxXj
13 9 12 negsubd φj0MxXx+j=xj
14 13 eqcomd φj0MxXxj=x+j
15 14 oveq1d φj0MxXxjifj=0P1P=x+jifj=0P1P
16 15 mpteq2dva φj0MxXxjifj=0P1P=xXx+jifj=0P1P
17 16 mpteq2dva φj0MxXxjifj=0P1P=j0MxXx+jifj=0P1P
18 4 17 eqtrid φH=j0MxXx+jifj=0P1P
19 negeq j=Jj=J
20 19 oveq2d j=Jx+j=x+- J
21 eqeq1 j=Jj=0J=0
22 21 ifbid j=Jifj=0P1P=ifJ=0P1P
23 20 22 oveq12d j=Jx+jifj=0P1P=x+- JifJ=0P1P
24 23 mpteq2dv j=JxXx+jifj=0P1P=xXx+- JifJ=0P1P
25 24 adantl φj=JxXx+jifj=0P1P=xXx+- JifJ=0P1P
26 mptexg XTopOpenfld𝑡SxXx+- JifJ=0P1PV
27 2 26 syl φxXx+- JifJ=0P1PV
28 18 25 5 27 fvmptd φHJ=xXx+- JifJ=0P1P
29 28 oveq2d φSDnHJ=SDnxXx+- JifJ=0P1P
30 29 fveq1d φSDnHJN=SDnxXx+- JifJ=0P1PN
31 elfzelz J0MJ
32 31 zcnd J0MJ
33 5 32 syl φJ
34 33 negcld φJ
35 nnm1nn0 PP10
36 3 35 syl φP10
37 3 nnnn0d φP0
38 36 37 ifcld φifJ=0P1P0
39 eqid xXx+- JifJ=0P1P=xXx+- JifJ=0P1P
40 1 2 34 38 39 dvnxpaek φN0SDnxXx+- JifJ=0P1PN=xXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!x+- JifJ=0P1PN
41 6 40 mpdan φSDnxXx+- JifJ=0P1PN=xXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!x+- JifJ=0P1PN
42 33 adantr φxXJ
43 8 42 negsubd φxXx+- J=xJ
44 43 oveq1d φxXx+- JifJ=0P1PN=xJifJ=0P1PN
45 44 oveq2d φxXifJ=0P1P!ifJ=0P1PN!x+- JifJ=0P1PN=ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN
46 45 ifeq2d φxXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!x+- JifJ=0P1PN=ififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN
47 46 mpteq2dva φxXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!x+- JifJ=0P1PN=xXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN
48 30 41 47 3eqtrd φSDnHJN=xXififJ=0P1P<N0ifJ=0P1P!ifJ=0P1PN!xJifJ=0P1PN