Metamath Proof Explorer


Theorem dvnxpaek

Description: The n -th derivative of the polynomial ( x + A ) ^ K . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvnxpaek.s φS
dvnxpaek.x φXTopOpenfld𝑡S
dvnxpaek.a φA
dvnxpaek.k φK0
dvnxpaek.f F=xXx+AK
Assertion dvnxpaek φN0SDnFN=xXifK<N0K!KN!x+AKN

Proof

Step Hyp Ref Expression
1 dvnxpaek.s φS
2 dvnxpaek.x φXTopOpenfld𝑡S
3 dvnxpaek.a φA
4 dvnxpaek.k φK0
5 dvnxpaek.f F=xXx+AK
6 fveq2 n=0SDnFn=SDnF0
7 breq2 n=0K<nK<0
8 eqidd n=00=0
9 oveq2 n=0Kn=K0
10 9 fveq2d n=0Kn!=K0!
11 10 oveq2d n=0K!Kn!=K!K0!
12 9 oveq2d n=0x+AKn=x+AK0
13 11 12 oveq12d n=0K!Kn!x+AKn=K!K0!x+AK0
14 7 8 13 ifbieq12d n=0ifK<n0K!Kn!x+AKn=ifK<00K!K0!x+AK0
15 14 mpteq2dv n=0xXifK<n0K!Kn!x+AKn=xXifK<00K!K0!x+AK0
16 6 15 eqeq12d n=0SDnFn=xXifK<n0K!Kn!x+AKnSDnF0=xXifK<00K!K0!x+AK0
17 fveq2 n=mSDnFn=SDnFm
18 breq2 n=mK<nK<m
19 eqidd n=m0=0
20 oveq2 n=mKn=Km
21 20 fveq2d n=mKn!=Km!
22 21 oveq2d n=mK!Kn!=K!Km!
23 20 oveq2d n=mx+AKn=x+AKm
24 22 23 oveq12d n=mK!Kn!x+AKn=K!Km!x+AKm
25 18 19 24 ifbieq12d n=mifK<n0K!Kn!x+AKn=ifK<m0K!Km!x+AKm
26 25 mpteq2dv n=mxXifK<n0K!Kn!x+AKn=xXifK<m0K!Km!x+AKm
27 17 26 eqeq12d n=mSDnFn=xXifK<n0K!Kn!x+AKnSDnFm=xXifK<m0K!Km!x+AKm
28 fveq2 n=m+1SDnFn=SDnFm+1
29 breq2 n=m+1K<nK<m+1
30 eqidd n=m+10=0
31 oveq2 n=m+1Kn=Km+1
32 31 fveq2d n=m+1Kn!=Km+1!
33 32 oveq2d n=m+1K!Kn!=K!Km+1!
34 31 oveq2d n=m+1x+AKn=x+AKm+1
35 33 34 oveq12d n=m+1K!Kn!x+AKn=K!Km+1!x+AKm+1
36 29 30 35 ifbieq12d n=m+1ifK<n0K!Kn!x+AKn=ifK<m+10K!Km+1!x+AKm+1
37 36 mpteq2dv n=m+1xXifK<n0K!Kn!x+AKn=xXifK<m+10K!Km+1!x+AKm+1
38 28 37 eqeq12d n=m+1SDnFn=xXifK<n0K!Kn!x+AKnSDnFm+1=xXifK<m+10K!Km+1!x+AKm+1
39 fveq2 n=NSDnFn=SDnFN
40 breq2 n=NK<nK<N
41 eqidd n=N0=0
42 oveq2 n=NKn=KN
43 42 fveq2d n=NKn!=KN!
44 43 oveq2d n=NK!Kn!=K!KN!
45 42 oveq2d n=Nx+AKn=x+AKN
46 44 45 oveq12d n=NK!Kn!x+AKn=K!KN!x+AKN
47 40 41 46 ifbieq12d n=NifK<n0K!Kn!x+AKn=ifK<N0K!KN!x+AKN
48 47 mpteq2dv n=NxXifK<n0K!Kn!x+AKn=xXifK<N0K!KN!x+AKN
49 39 48 eqeq12d n=NSDnFn=xXifK<n0K!Kn!x+AKnSDnFN=xXifK<N0K!KN!x+AKN
50 recnprss SS
51 1 50 syl φS
52 cnex V
53 52 a1i φV
54 restsspw TopOpenfld𝑡S𝒫S
55 id XTopOpenfld𝑡SXTopOpenfld𝑡S
56 54 55 sselid XTopOpenfld𝑡SX𝒫S
57 elpwi X𝒫SXS
58 56 57 syl XTopOpenfld𝑡SXS
59 2 58 syl φXS
60 59 51 sstrd φX
61 60 adantr φxXX
62 simpr φxXxX
63 61 62 sseldd φxXx
64 3 adantr φxXA
65 63 64 addcld φxXx+A
66 4 adantr φxXK0
67 65 66 expcld φxXx+AK
68 67 5 fmptd φF:X
69 elpm2r VSF:XXSF𝑝𝑚S
70 53 1 68 59 69 syl22anc φF𝑝𝑚S
71 dvn0 SF𝑝𝑚SSDnF0=F
72 51 70 71 syl2anc φSDnF0=F
73 5 a1i φF=xXx+AK
74 4 nn0ge0d φ0K
75 0red φ0
76 4 nn0red φK
77 75 76 lenltd φ0K¬K<0
78 74 77 mpbid φ¬K<0
79 78 iffalsed φifK<00K!K0!x+AK0=K!K0!x+AK0
80 79 adantr φxXifK<00K!K0!x+AK0=K!K0!x+AK0
81 4 nn0cnd φK
82 81 subid1d φK0=K
83 82 fveq2d φK0!=K!
84 83 oveq2d φK!K0!=K!K!
85 faccl K0K!
86 4 85 syl φK!
87 86 nncnd φK!
88 86 nnne0d φK!0
89 87 88 dividd φK!K!=1
90 84 89 eqtrd φK!K0!=1
91 82 oveq2d φx+AK0=x+AK
92 90 91 oveq12d φK!K0!x+AK0=1x+AK
93 92 adantr φxXK!K0!x+AK0=1x+AK
94 67 mullidd φxX1x+AK=x+AK
95 80 93 94 3eqtrrd φxXx+AK=ifK<00K!K0!x+AK0
96 95 mpteq2dva φxXx+AK=xXifK<00K!K0!x+AK0
97 72 73 96 3eqtrd φSDnF0=xXifK<00K!K0!x+AK0
98 51 adantr φm0S
99 70 adantr φm0F𝑝𝑚S
100 simpr φm0m0
101 dvnp1 SF𝑝𝑚Sm0SDnFm+1=SDSDnFm
102 98 99 100 101 syl3anc φm0SDnFm+1=SDSDnFm
103 102 adantr φm0SDnFm=xXifK<m0K!Km!x+AKmSDnFm+1=SDSDnFm
104 oveq2 SDnFm=xXifK<m0K!Km!x+AKmSDSDnFm=dxXifK<m0K!Km!x+AKmdSx
105 104 adantl φm0SDnFm=xXifK<m0K!Km!x+AKmSDSDnFm=dxXifK<m0K!Km!x+AKmdSx
106 iftrue K<mifK<m0K!Km!x+AKm=0
107 106 mpteq2dv K<mxXifK<m0K!Km!x+AKm=xX0
108 107 oveq2d K<mdxXifK<m0K!Km!x+AKmdSx=dxX0dSx
109 108 adantl φm0K<mdxXifK<m0K!Km!x+AKmdSx=dxX0dSx
110 0cnd φ0
111 1 2 110 dvmptconst φdxX0dSx=xX0
112 111 ad2antrr φm0K<mdxX0dSx=xX0
113 76 ad2antrr φm0K<mK
114 nn0re m0m
115 114 ad2antlr φm0K<mm
116 simpr φm0K<mK<m
117 113 115 116 ltled φm0K<mKm
118 4 nn0zd φK
119 118 adantr φm0K
120 100 nn0zd φm0m
121 zleltp1 KmKmK<m+1
122 119 120 121 syl2anc φm0KmK<m+1
123 122 adantr φm0K<mKmK<m+1
124 117 123 mpbid φm0K<mK<m+1
125 124 iftrued φm0K<mifK<m+10K!Km+1!x+AKm+1=0
126 125 mpteq2dv φm0K<mxXifK<m+10K!Km+1!x+AKm+1=xX0
127 126 eqcomd φm0K<mxX0=xXifK<m+10K!Km+1!x+AKm+1
128 109 112 127 3eqtrd φm0K<mdxXifK<m0K!Km!x+AKmdSx=xXifK<m+10K!Km+1!x+AKm+1
129 simpl φm0¬K<mφm0
130 simpr φm0¬K<m¬K<m
131 129 100 114 3syl φm0¬K<mm
132 76 ad2antrr φm0¬K<mK
133 131 132 lenltd φm0¬K<mmK¬K<m
134 130 133 mpbird φm0¬K<mmK
135 simpr φm0m=Km=K
136 114 ad2antlr φm0m=Km
137 76 ad2antrr φm0m=KK
138 136 137 lttri3d φm0m=Km=K¬m<K¬K<m
139 135 138 mpbid φm0m=K¬m<K¬K<m
140 simpr ¬m<K¬K<m¬K<m
141 139 140 syl φm0m=K¬K<m
142 141 iffalsed φm0m=KifK<m0K!Km!x+AKm=K!Km!x+AKm
143 142 mpteq2dv φm0m=KxXifK<m0K!Km!x+AKm=xXK!Km!x+AKm
144 143 oveq2d φm0m=KdxXifK<m0K!Km!x+AKmdSx=dxXK!Km!x+AKmdSx
145 oveq2 m=KKm=KK
146 145 fveq2d m=KKm!=KK!
147 146 adantl φm=KKm!=KK!
148 81 subidd φKK=0
149 148 fveq2d φKK!=0!
150 fac0 0!=1
151 150 a1i φ0!=1
152 149 151 eqtrd φKK!=1
153 152 adantr φm=KKK!=1
154 147 153 eqtrd φm=KKm!=1
155 154 oveq2d φm=KK!Km!=K!1
156 87 div1d φK!1=K!
157 156 adantr φm=KK!1=K!
158 155 157 eqtrd φm=KK!Km!=K!
159 158 adantr φm=KxXK!Km!=K!
160 145 adantl φm=KKm=KK
161 148 adantr φm=KKK=0
162 160 161 eqtrd φm=KKm=0
163 162 oveq2d φm=Kx+AKm=x+A0
164 163 adantr φm=KxXx+AKm=x+A0
165 65 exp0d φxXx+A0=1
166 165 adantlr φm=KxXx+A0=1
167 164 166 eqtrd φm=KxXx+AKm=1
168 159 167 oveq12d φm=KxXK!Km!x+AKm=K!1
169 87 mulridd φK!1=K!
170 169 ad2antrr φm=KxXK!1=K!
171 168 170 eqtrd φm=KxXK!Km!x+AKm=K!
172 171 mpteq2dva φm=KxXK!Km!x+AKm=xXK!
173 172 oveq2d φm=KdxXK!Km!x+AKmdSx=dxXK!dSx
174 1 2 87 dvmptconst φdxXK!dSx=xX0
175 174 adantr φm=KdxXK!dSx=xX0
176 173 175 eqtrd φm=KdxXK!Km!x+AKmdSx=xX0
177 176 adantlr φm0m=KdxXK!Km!x+AKmdSx=xX0
178 137 ltp1d φm0m=KK<K+1
179 oveq1 m=Km+1=K+1
180 179 eqcomd m=KK+1=m+1
181 180 adantl φm0m=KK+1=m+1
182 178 181 breqtrd φm0m=KK<m+1
183 182 iftrued φm0m=KifK<m+10K!Km+1!x+AKm+1=0
184 183 eqcomd φm0m=K0=ifK<m+10K!Km+1!x+AKm+1
185 184 mpteq2dv φm0m=KxX0=xXifK<m+10K!Km+1!x+AKm+1
186 144 177 185 3eqtrd φm0m=KdxXifK<m0K!Km!x+AKmdSx=xXifK<m+10K!Km+1!x+AKm+1
187 186 adantlr φm0mKm=KdxXifK<m0K!Km!x+AKmdSx=xXifK<m+10K!Km+1!x+AKm+1
188 simpll φm0mK¬m=Kφm0
189 188 100 114 3syl φm0mK¬m=Km
190 76 ad3antrrr φm0mK¬m=KK
191 simplr φm0mK¬m=KmK
192 neqne ¬m=KmK
193 192 necomd ¬m=KKm
194 193 adantl φm0mK¬m=KKm
195 189 190 191 194 leneltd φm0mK¬m=Km<K
196 114 ad2antlr φm0m<Km
197 76 ad2antrr φm0m<KK
198 simpr φm0m<Km<K
199 196 197 198 ltled φm0m<KmK
200 196 197 lenltd φm0m<KmK¬K<m
201 199 200 mpbid φm0m<K¬K<m
202 201 iffalsed φm0m<KifK<m0K!Km!x+AKm=K!Km!x+AKm
203 202 mpteq2dv φm0m<KxXifK<m0K!Km!x+AKm=xXK!Km!x+AKm
204 203 oveq2d φm0m<KdxXifK<m0K!Km!x+AKmdSx=dxXK!Km!x+AKmdSx
205 1 adantr φm0S
206 205 adantr φm0m<KS
207 87 ad2antrr φm0m<KK!
208 100 adantr φm0m<Km0
209 4 ad2antrr φm0m<KK0
210 nn0sub m0K0mKKm0
211 208 209 210 syl2anc φm0m<KmKKm0
212 199 211 mpbid φm0m<KKm0
213 faccl Km0Km!
214 212 213 syl φm0m<KKm!
215 214 nncnd φm0m<KKm!
216 214 nnne0d φm0m<KKm!0
217 207 215 216 divcld φm0m<KK!Km!
218 217 adantr φm0m<KxXK!Km!
219 75 ad3antrrr φm0m<KxX0
220 2 adantr φm0XTopOpenfld𝑡S
221 220 adantr φm0m<KXTopOpenfld𝑡S
222 206 221 217 dvmptconst φm0m<KdxXK!Km!dSx=xX0
223 65 adantlr φm0xXx+A
224 223 adantlr φm0m<KxXx+A
225 212 adantr φm0m<KxXKm0
226 224 225 expcld φm0m<KxXx+AKm
227 225 nn0cnd φm0m<KxXKm
228 212 nn0zd φm0m<KKm
229 196 197 posdifd φm0m<Km<K0<Km
230 198 229 mpbid φm0m<K0<Km
231 228 230 jca φm0m<KKm0<Km
232 elnnz KmKm0<Km
233 231 232 sylibr φm0m<KKm
234 nnm1nn0 KmK-m-10
235 233 234 syl φm0m<KK-m-10
236 235 adantr φm0m<KxXK-m-10
237 224 236 expcld φm0m<KxXx+AK-m-1
238 227 237 mulcld φm0m<KxXKmx+AK-m-1
239 3 ad2antrr φm0m<KA
240 206 221 239 233 dvxpaek φm0m<KdxXx+AKmdSx=xXKmx+AK-m-1
241 206 218 219 222 226 238 240 dvmptmul φm0m<KdxXK!Km!x+AKmdSx=xX0x+AKm+Kmx+AK-m-1K!Km!
242 226 mul02d φm0m<KxX0x+AKm=0
243 242 oveq1d φm0m<KxX0x+AKm+Kmx+AK-m-1K!Km!=0+Kmx+AK-m-1K!Km!
244 238 218 mulcld φm0m<KxXKmx+AK-m-1K!Km!
245 244 addlidd φm0m<KxX0+Kmx+AK-m-1K!Km!=Kmx+AK-m-1K!Km!
246 120 adantr φm0m<Km
247 119 adantr φm0m<KK
248 zltp1le mKm<Km+1K
249 246 247 248 syl2anc φm0m<Km<Km+1K
250 198 249 mpbid φm0m<Km+1K
251 peano2re mm+1
252 196 251 syl φm0m<Km+1
253 252 197 lenltd φm0m<Km+1K¬K<m+1
254 250 253 mpbid φm0m<K¬K<m+1
255 254 adantr φm0m<KxX¬K<m+1
256 255 iffalsed φm0m<KxXifK<m+10K!Km+1!x+AKm+1=K!Km+1!x+AKm+1
257 218 227 237 mulassd φm0m<KxXK!Km!Kmx+AK-m-1=K!Km!Kmx+AK-m-1
258 257 eqcomd φm0m<KxXK!Km!Kmx+AK-m-1=K!Km!Kmx+AK-m-1
259 233 nncnd φm0m<KKm
260 207 215 259 216 div32d φm0m<KK!Km!Km=K!KmKm!
261 facnn2 KmKm!=K-m-1!Km
262 233 261 syl φm0m<KKm!=K-m-1!Km
263 262 oveq2d φm0m<KKmKm!=KmK-m-1!Km
264 faccl K-m-10K-m-1!
265 234 264 syl KmK-m-1!
266 265 nncnd KmK-m-1!
267 233 266 syl φm0m<KK-m-1!
268 235 264 syl φm0m<KK-m-1!
269 nnne0 K-m-1!K-m-1!0
270 268 269 syl φm0m<KK-m-1!0
271 nnne0 KmKm0
272 233 271 syl φm0m<KKm0
273 267 259 270 272 divcan8d φm0m<KKmK-m-1!Km=1K-m-1!
274 263 273 eqtrd φm0m<KKmKm!=1K-m-1!
275 274 oveq2d φm0m<KK!KmKm!=K!1K-m-1!
276 eqidd φm0m<KK!1K-m-1!=K!1K-m-1!
277 260 275 276 3eqtrd φm0m<KK!Km!Km=K!1K-m-1!
278 277 adantr φm0m<KxXK!Km!Km=K!1K-m-1!
279 81 adantr φm0K
280 100 nn0cnd φm0m
281 1cnd φm01
282 279 280 281 subsub4d φm0K-m-1=Km+1
283 282 oveq2d φm0x+AK-m-1=x+AKm+1
284 283 ad2antrr φm0m<KxXx+AK-m-1=x+AKm+1
285 278 284 oveq12d φm0m<KxXK!Km!Kmx+AK-m-1=K!1K-m-1!x+AKm+1
286 282 adantr φm0m<KK-m-1=Km+1
287 286 eqcomd φm0m<KKm+1=K-m-1
288 287 fveq2d φm0m<KKm+1!=K-m-1!
289 288 oveq2d φm0m<KK!Km+1!=K!K-m-1!
290 207 267 270 divrecd φm0m<KK!K-m-1!=K!1K-m-1!
291 289 290 eqtr2d φm0m<KK!1K-m-1!=K!Km+1!
292 291 adantr φm0m<KxXK!1K-m-1!=K!Km+1!
293 292 oveq1d φm0m<KxXK!1K-m-1!x+AKm+1=K!Km+1!x+AKm+1
294 258 285 293 3eqtrrd φm0m<KxXK!Km+1!x+AKm+1=K!Km!Kmx+AK-m-1
295 218 238 mulcomd φm0m<KxXK!Km!Kmx+AK-m-1=Kmx+AK-m-1K!Km!
296 256 294 295 3eqtrrd φm0m<KxXKmx+AK-m-1K!Km!=ifK<m+10K!Km+1!x+AKm+1
297 243 245 296 3eqtrd φm0m<KxX0x+AKm+Kmx+AK-m-1K!Km!=ifK<m+10K!Km+1!x+AKm+1
298 297 mpteq2dva φm0m<KxX0x+AKm+Kmx+AK-m-1K!Km!=xXifK<m+10K!Km+1!x+AKm+1
299 204 241 298 3eqtrd φm0m<KdxXifK<m0K!Km!x+AKmdSx=xXifK<m+10K!Km+1!x+AKm+1
300 188 195 299 syl2anc φm0mK¬m=KdxXifK<m0K!Km!x+AKmdSx=xXifK<m+10K!Km+1!x+AKm+1
301 187 300 pm2.61dan φm0mKdxXifK<m0K!Km!x+AKmdSx=xXifK<m+10K!Km+1!x+AKm+1
302 129 134 301 syl2anc φm0¬K<mdxXifK<m0K!Km!x+AKmdSx=xXifK<m+10K!Km+1!x+AKm+1
303 128 302 pm2.61dan φm0dxXifK<m0K!Km!x+AKmdSx=xXifK<m+10K!Km+1!x+AKm+1
304 303 adantr φm0SDnFm=xXifK<m0K!Km!x+AKmdxXifK<m0K!Km!x+AKmdSx=xXifK<m+10K!Km+1!x+AKm+1
305 103 105 304 3eqtrd φm0SDnFm=xXifK<m0K!Km!x+AKmSDnFm+1=xXifK<m+10K!Km+1!x+AKm+1
306 16 27 38 49 97 305 nn0indd φN0SDnFN=xXifK<N0K!KN!x+AKN