Metamath Proof Explorer


Theorem dvmptconst

Description: Function-builder for derivative: derivative of a constant. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvmptconst.s φS
dvmptconst.a φATopOpenfld𝑡S
dvmptconst.b φB
Assertion dvmptconst φdxABdSx=xA0

Proof

Step Hyp Ref Expression
1 dvmptconst.s φS
2 dvmptconst.a φATopOpenfld𝑡S
3 dvmptconst.b φB
4 3 adantr φxSB
5 0red φxS0
6 1 3 dvmptc φdxSBdSx=xS0
7 eqid TopOpenfld=TopOpenfld
8 7 cnfldtopon TopOpenfldTopOn
9 8 a1i φTopOpenfldTopOn
10 ax-resscn
11 sseq1 S=S
12 10 11 mpbiri S=S
13 eqimss S=S
14 12 13 pm3.2i S=SS=S
15 elpri SS=S=
16 1 15 syl φS=S=
17 pm3.44 S=SS=SS=S=S
18 14 16 17 mpsyl φS
19 resttopon TopOpenfldTopOnSTopOpenfld𝑡STopOnS
20 9 18 19 syl2anc φTopOpenfld𝑡STopOnS
21 toponss TopOpenfld𝑡STopOnSATopOpenfld𝑡SAS
22 20 2 21 syl2anc φAS
23 eqid TopOpenfld𝑡S=TopOpenfld𝑡S
24 1 4 5 6 22 23 7 2 dvmptres φdxABdSx=xA0