Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptconst.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvmptconst.a |
|- ( ph -> A e. ( ( TopOpen ` CCfld ) |`t S ) ) |
3 |
|
dvmptconst.b |
|- ( ph -> B e. CC ) |
4 |
3
|
adantr |
|- ( ( ph /\ x e. S ) -> B e. CC ) |
5 |
|
0red |
|- ( ( ph /\ x e. S ) -> 0 e. RR ) |
6 |
1 3
|
dvmptc |
|- ( ph -> ( S _D ( x e. S |-> B ) ) = ( x e. S |-> 0 ) ) |
7 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
8 |
7
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
9 |
8
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
10 |
|
ax-resscn |
|- RR C_ CC |
11 |
|
sseq1 |
|- ( S = RR -> ( S C_ CC <-> RR C_ CC ) ) |
12 |
10 11
|
mpbiri |
|- ( S = RR -> S C_ CC ) |
13 |
|
eqimss |
|- ( S = CC -> S C_ CC ) |
14 |
12 13
|
pm3.2i |
|- ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) |
15 |
|
elpri |
|- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
16 |
1 15
|
syl |
|- ( ph -> ( S = RR \/ S = CC ) ) |
17 |
|
pm3.44 |
|- ( ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) -> ( ( S = RR \/ S = CC ) -> S C_ CC ) ) |
18 |
14 16 17
|
mpsyl |
|- ( ph -> S C_ CC ) |
19 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
20 |
9 18 19
|
syl2anc |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
21 |
|
toponss |
|- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) /\ A e. ( ( TopOpen ` CCfld ) |`t S ) ) -> A C_ S ) |
22 |
20 2 21
|
syl2anc |
|- ( ph -> A C_ S ) |
23 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
24 |
1 4 5 6 22 23 7 2
|
dvmptres |
|- ( ph -> ( S _D ( x e. A |-> B ) ) = ( x e. A |-> 0 ) ) |