Description: Derivative of the polynomial ( x + A ) ^ K . (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvxpaek.s | |
|
dvxpaek.x | |
||
dvxpaek.a | |
||
dvxpaek.k | |
||
Assertion | dvxpaek | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvxpaek.s | |
|
2 | dvxpaek.x | |
|
3 | dvxpaek.a | |
|
4 | dvxpaek.k | |
|
5 | cnelprrecn | |
|
6 | 5 | a1i | |
7 | 1 2 | dvdmsscn | |
8 | 7 | adantr | |
9 | simpr | |
|
10 | 8 9 | sseldd | |
11 | 3 | adantr | |
12 | 10 11 | addcld | |
13 | 1red | |
|
14 | 0red | |
|
15 | 13 14 | readdcld | |
16 | simpr | |
|
17 | 4 | nnnn0d | |
18 | 17 | adantr | |
19 | 16 18 | expcld | |
20 | 18 | nn0cnd | |
21 | nnm1nn0 | |
|
22 | 4 21 | syl | |
23 | 22 | adantr | |
24 | 16 23 | expcld | |
25 | 20 24 | mulcld | |
26 | 1 2 | dvmptidg | |
27 | 1 2 3 | dvmptconst | |
28 | 1 10 13 26 11 14 27 | dvmptadd | |
29 | dvexp | |
|
30 | 4 29 | syl | |
31 | oveq1 | |
|
32 | oveq1 | |
|
33 | 32 | oveq2d | |
34 | 1 6 12 15 19 25 28 30 31 33 | dvmptco | |
35 | 1p0e1 | |
|
36 | 35 | oveq2i | |
37 | 36 | a1i | |
38 | 4 | nncnd | |
39 | 38 | adantr | |
40 | 22 | adantr | |
41 | 12 40 | expcld | |
42 | 39 41 | mulcld | |
43 | 42 | mulridd | |
44 | 37 43 | eqtrd | |
45 | 44 | mpteq2dva | |
46 | 34 45 | eqtrd | |