Metamath Proof Explorer


Theorem etransclem21

Description: The N -th derivative of H applied to Y . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem21.s
|- ( ph -> S e. { RR , CC } )
etransclem21.x
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) )
etransclem21.p
|- ( ph -> P e. NN )
etransclem21.h
|- H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) )
etransclem21.j
|- ( ph -> J e. ( 0 ... M ) )
etransclem21.n
|- ( ph -> N e. NN0 )
etransclem21.y
|- ( ph -> Y e. X )
Assertion etransclem21
|- ( ph -> ( ( ( S Dn ( H ` J ) ) ` N ) ` Y ) = if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) )

Proof

Step Hyp Ref Expression
1 etransclem21.s
 |-  ( ph -> S e. { RR , CC } )
2 etransclem21.x
 |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) )
3 etransclem21.p
 |-  ( ph -> P e. NN )
4 etransclem21.h
 |-  H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) )
5 etransclem21.j
 |-  ( ph -> J e. ( 0 ... M ) )
6 etransclem21.n
 |-  ( ph -> N e. NN0 )
7 etransclem21.y
 |-  ( ph -> Y e. X )
8 1 2 3 4 5 6 etransclem17
 |-  ( ph -> ( ( S Dn ( H ` J ) ) ` N ) = ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) )
9 oveq1
 |-  ( x = Y -> ( x - J ) = ( Y - J ) )
10 9 oveq1d
 |-  ( x = Y -> ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) = ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) )
11 10 oveq2d
 |-  ( x = Y -> ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) = ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) )
12 11 ifeq2d
 |-  ( x = Y -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) = if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) )
13 12 adantl
 |-  ( ( ph /\ x = Y ) -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) = if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) )
14 0cnd
 |-  ( ( ph /\ if ( J = 0 , ( P - 1 ) , P ) < N ) -> 0 e. CC )
15 nnm1nn0
 |-  ( P e. NN -> ( P - 1 ) e. NN0 )
16 3 15 syl
 |-  ( ph -> ( P - 1 ) e. NN0 )
17 3 nnnn0d
 |-  ( ph -> P e. NN0 )
18 16 17 ifcld
 |-  ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. NN0 )
19 18 faccld
 |-  ( ph -> ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) e. NN )
20 19 nncnd
 |-  ( ph -> ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) e. CC )
21 20 adantr
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) e. CC )
22 18 nn0zd
 |-  ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. ZZ )
23 6 nn0zd
 |-  ( ph -> N e. ZZ )
24 22 23 zsubcld
 |-  ( ph -> ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. ZZ )
25 24 adantr
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. ZZ )
26 6 nn0red
 |-  ( ph -> N e. RR )
27 26 adantr
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> N e. RR )
28 18 nn0red
 |-  ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. RR )
29 28 adantr
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> if ( J = 0 , ( P - 1 ) , P ) e. RR )
30 simpr
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> -. if ( J = 0 , ( P - 1 ) , P ) < N )
31 27 29 30 nltled
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> N <_ if ( J = 0 , ( P - 1 ) , P ) )
32 29 27 subge0d
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( 0 <_ ( if ( J = 0 , ( P - 1 ) , P ) - N ) <-> N <_ if ( J = 0 , ( P - 1 ) , P ) ) )
33 31 32 mpbird
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> 0 <_ ( if ( J = 0 , ( P - 1 ) , P ) - N ) )
34 elnn0z
 |-  ( ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. NN0 <-> ( ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. ZZ /\ 0 <_ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) )
35 25 33 34 sylanbrc
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. NN0 )
36 35 faccld
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) e. NN )
37 36 nncnd
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) e. CC )
38 36 nnne0d
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) =/= 0 )
39 21 37 38 divcld
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) e. CC )
40 1 2 dvdmsscn
 |-  ( ph -> X C_ CC )
41 40 7 sseldd
 |-  ( ph -> Y e. CC )
42 5 elfzelzd
 |-  ( ph -> J e. ZZ )
43 42 zcnd
 |-  ( ph -> J e. CC )
44 41 43 subcld
 |-  ( ph -> ( Y - J ) e. CC )
45 44 adantr
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( Y - J ) e. CC )
46 45 35 expcld
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) e. CC )
47 39 46 mulcld
 |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) e. CC )
48 14 47 ifclda
 |-  ( ph -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) e. CC )
49 8 13 7 48 fvmptd
 |-  ( ph -> ( ( ( S Dn ( H ` J ) ) ` N ) ` Y ) = if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) )