| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem21.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
etransclem21.x |
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 3 |
|
etransclem21.p |
|- ( ph -> P e. NN ) |
| 4 |
|
etransclem21.h |
|- H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
| 5 |
|
etransclem21.j |
|- ( ph -> J e. ( 0 ... M ) ) |
| 6 |
|
etransclem21.n |
|- ( ph -> N e. NN0 ) |
| 7 |
|
etransclem21.y |
|- ( ph -> Y e. X ) |
| 8 |
1 2 3 4 5 6
|
etransclem17 |
|- ( ph -> ( ( S Dn ( H ` J ) ) ` N ) = ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) ) |
| 9 |
|
oveq1 |
|- ( x = Y -> ( x - J ) = ( Y - J ) ) |
| 10 |
9
|
oveq1d |
|- ( x = Y -> ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) = ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) |
| 11 |
10
|
oveq2d |
|- ( x = Y -> ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) = ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) |
| 12 |
11
|
ifeq2d |
|- ( x = Y -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) = if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) |
| 13 |
12
|
adantl |
|- ( ( ph /\ x = Y ) -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) = if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) |
| 14 |
|
0cnd |
|- ( ( ph /\ if ( J = 0 , ( P - 1 ) , P ) < N ) -> 0 e. CC ) |
| 15 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
| 16 |
3 15
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
| 17 |
3
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
| 18 |
16 17
|
ifcld |
|- ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. NN0 ) |
| 19 |
18
|
faccld |
|- ( ph -> ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) e. NN ) |
| 20 |
19
|
nncnd |
|- ( ph -> ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) e. CC ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) e. CC ) |
| 22 |
18
|
nn0zd |
|- ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. ZZ ) |
| 23 |
6
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 24 |
22 23
|
zsubcld |
|- ( ph -> ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. ZZ ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. ZZ ) |
| 26 |
6
|
nn0red |
|- ( ph -> N e. RR ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> N e. RR ) |
| 28 |
18
|
nn0red |
|- ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. RR ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> if ( J = 0 , ( P - 1 ) , P ) e. RR ) |
| 30 |
|
simpr |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> -. if ( J = 0 , ( P - 1 ) , P ) < N ) |
| 31 |
27 29 30
|
nltled |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> N <_ if ( J = 0 , ( P - 1 ) , P ) ) |
| 32 |
29 27
|
subge0d |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( 0 <_ ( if ( J = 0 , ( P - 1 ) , P ) - N ) <-> N <_ if ( J = 0 , ( P - 1 ) , P ) ) ) |
| 33 |
31 32
|
mpbird |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> 0 <_ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) |
| 34 |
|
elnn0z |
|- ( ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. NN0 <-> ( ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. ZZ /\ 0 <_ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) |
| 35 |
25 33 34
|
sylanbrc |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. NN0 ) |
| 36 |
35
|
faccld |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) e. NN ) |
| 37 |
36
|
nncnd |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) e. CC ) |
| 38 |
36
|
nnne0d |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) =/= 0 ) |
| 39 |
21 37 38
|
divcld |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) e. CC ) |
| 40 |
1 2
|
dvdmsscn |
|- ( ph -> X C_ CC ) |
| 41 |
40 7
|
sseldd |
|- ( ph -> Y e. CC ) |
| 42 |
5
|
elfzelzd |
|- ( ph -> J e. ZZ ) |
| 43 |
42
|
zcnd |
|- ( ph -> J e. CC ) |
| 44 |
41 43
|
subcld |
|- ( ph -> ( Y - J ) e. CC ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( Y - J ) e. CC ) |
| 46 |
45 35
|
expcld |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) e. CC ) |
| 47 |
39 46
|
mulcld |
|- ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) e. CC ) |
| 48 |
14 47
|
ifclda |
|- ( ph -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) e. CC ) |
| 49 |
8 13 7 48
|
fvmptd |
|- ( ph -> ( ( ( S Dn ( H ` J ) ) ` N ) ` Y ) = if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( Y - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) |