| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem22.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | etransclem22.x |  |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 3 |  | etransclem22.p |  |-  ( ph -> P e. NN ) | 
						
							| 4 |  | etransclem22.h |  |-  H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 5 |  | etransclem22.J |  |-  ( ph -> J e. ( 0 ... M ) ) | 
						
							| 6 |  | etransclem22.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 7 | 1 2 3 4 5 6 | etransclem17 |  |-  ( ph -> ( ( S Dn ( H ` J ) ) ` N ) = ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ if ( J = 0 , ( P - 1 ) , P ) < N ) -> if ( J = 0 , ( P - 1 ) , P ) < N ) | 
						
							| 9 | 8 | iftrued |  |-  ( ( ph /\ if ( J = 0 , ( P - 1 ) , P ) < N ) -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) = 0 ) | 
						
							| 10 | 9 | mpteq2dv |  |-  ( ( ph /\ if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) = ( x e. X |-> 0 ) ) | 
						
							| 11 | 1 2 | dvdmsscn |  |-  ( ph -> X C_ CC ) | 
						
							| 12 |  | 0cnd |  |-  ( ph -> 0 e. CC ) | 
						
							| 13 |  | ssid |  |-  CC C_ CC | 
						
							| 14 | 13 | a1i |  |-  ( ph -> CC C_ CC ) | 
						
							| 15 | 11 12 14 | constcncfg |  |-  ( ph -> ( x e. X |-> 0 ) e. ( X -cn-> CC ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( x e. X |-> 0 ) e. ( X -cn-> CC ) ) | 
						
							| 17 | 10 16 | eqeltrd |  |-  ( ( ph /\ if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) e. ( X -cn-> CC ) ) | 
						
							| 18 |  | simpr |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> -. if ( J = 0 , ( P - 1 ) , P ) < N ) | 
						
							| 19 | 18 | iffalsed |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) = ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) | 
						
							| 20 | 19 | mpteq2dv |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) = ( x e. X |-> ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) | 
						
							| 21 |  | nfv |  |-  F/ x ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) | 
						
							| 22 | 11 14 | idcncfg |  |-  ( ph -> ( x e. X |-> x ) e. ( X -cn-> CC ) ) | 
						
							| 23 | 5 | elfzelzd |  |-  ( ph -> J e. ZZ ) | 
						
							| 24 | 23 | zcnd |  |-  ( ph -> J e. CC ) | 
						
							| 25 | 11 24 14 | constcncfg |  |-  ( ph -> ( x e. X |-> J ) e. ( X -cn-> CC ) ) | 
						
							| 26 | 22 25 | subcncf |  |-  ( ph -> ( x e. X |-> ( x - J ) ) e. ( X -cn-> CC ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( x e. X |-> ( x - J ) ) e. ( X -cn-> CC ) ) | 
						
							| 28 | 13 | a1i |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> CC C_ CC ) | 
						
							| 29 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 30 | 3 29 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 31 | 3 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 32 | 30 31 | ifcld |  |-  ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 33 | 32 | faccld |  |-  ( ph -> ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) e. NN ) | 
						
							| 34 | 33 | nncnd |  |-  ( ph -> ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) e. CC ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) e. CC ) | 
						
							| 36 | 32 | nn0zd |  |-  ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. ZZ ) | 
						
							| 37 | 6 | nn0zd |  |-  ( ph -> N e. ZZ ) | 
						
							| 38 | 36 37 | zsubcld |  |-  ( ph -> ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. ZZ ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. ZZ ) | 
						
							| 40 | 6 | nn0red |  |-  ( ph -> N e. RR ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> N e. RR ) | 
						
							| 42 | 32 | nn0red |  |-  ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. RR ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> if ( J = 0 , ( P - 1 ) , P ) e. RR ) | 
						
							| 44 | 41 43 18 | nltled |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> N <_ if ( J = 0 , ( P - 1 ) , P ) ) | 
						
							| 45 | 43 41 | subge0d |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( 0 <_ ( if ( J = 0 , ( P - 1 ) , P ) - N ) <-> N <_ if ( J = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 46 | 44 45 | mpbird |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> 0 <_ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) | 
						
							| 47 |  | elnn0z |  |-  ( ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. NN0 <-> ( ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. ZZ /\ 0 <_ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) | 
						
							| 48 | 39 46 47 | sylanbrc |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. NN0 ) | 
						
							| 49 | 48 | faccld |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) e. NN ) | 
						
							| 50 | 49 | nncnd |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) e. CC ) | 
						
							| 51 | 49 | nnne0d |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) =/= 0 ) | 
						
							| 52 | 35 50 51 | divcld |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) e. CC ) | 
						
							| 53 | 28 52 28 | constcncfg |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( y e. CC |-> ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) e. ( CC -cn-> CC ) ) | 
						
							| 54 |  | expcncf |  |-  ( ( if ( J = 0 , ( P - 1 ) , P ) - N ) e. NN0 -> ( y e. CC |-> ( y ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) e. ( CC -cn-> CC ) ) | 
						
							| 55 | 48 54 | syl |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( y e. CC |-> ( y ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) e. ( CC -cn-> CC ) ) | 
						
							| 56 | 53 55 | mulcncf |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( y e. CC |-> ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( y ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) e. ( CC -cn-> CC ) ) | 
						
							| 57 |  | oveq1 |  |-  ( y = ( x - J ) -> ( y ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) = ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) | 
						
							| 58 | 57 | oveq2d |  |-  ( y = ( x - J ) -> ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( y ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) = ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) | 
						
							| 59 | 21 27 56 28 58 | cncfcompt2 |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( x e. X |-> ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) e. ( X -cn-> CC ) ) | 
						
							| 60 | 20 59 | eqeltrd |  |-  ( ( ph /\ -. if ( J = 0 , ( P - 1 ) , P ) < N ) -> ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) e. ( X -cn-> CC ) ) | 
						
							| 61 | 17 60 | pm2.61dan |  |-  ( ph -> ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) e. ( X -cn-> CC ) ) | 
						
							| 62 | 7 61 | eqeltrd |  |-  ( ph -> ( ( S Dn ( H ` J ) ) ` N ) e. ( X -cn-> CC ) ) |