| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem23.a |  |-  ( ph -> A : NN0 --> ZZ ) | 
						
							| 2 |  | etransclem23.l |  |-  L = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) | 
						
							| 3 |  | etransclem23.k |  |-  K = ( L / ( ! ` ( P - 1 ) ) ) | 
						
							| 4 |  | etransclem23.p |  |-  ( ph -> P e. NN ) | 
						
							| 5 |  | etransclem23.m |  |-  ( ph -> M e. NN ) | 
						
							| 6 |  | etransclem23.f |  |-  F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | 
						
							| 7 |  | etransclem23.lt1 |  |-  ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) < 1 ) | 
						
							| 8 | 2 | oveq1i |  |-  ( L / ( ! ` ( P - 1 ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) / ( ! ` ( P - 1 ) ) ) | 
						
							| 9 | 3 8 | eqtri |  |-  K = ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) / ( ! ` ( P - 1 ) ) ) | 
						
							| 10 | 9 | fveq2i |  |-  ( abs ` K ) = ( abs ` ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 11 | 10 | a1i |  |-  ( ph -> ( abs ` K ) = ( abs ` ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 12 |  | fzfid |  |-  ( ph -> ( 0 ... M ) e. Fin ) | 
						
							| 13 | 1 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> A : NN0 --> ZZ ) | 
						
							| 14 |  | elfznn0 |  |-  ( j e. ( 0 ... M ) -> j e. NN0 ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> j e. NN0 ) | 
						
							| 16 | 13 15 | ffvelcdmd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. ZZ ) | 
						
							| 17 | 16 | zcnd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. CC ) | 
						
							| 18 |  | ere |  |-  _e e. RR | 
						
							| 19 | 18 | recni |  |-  _e e. CC | 
						
							| 20 | 19 | a1i |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> _e e. CC ) | 
						
							| 21 |  | elfzelz |  |-  ( j e. ( 0 ... M ) -> j e. ZZ ) | 
						
							| 22 | 21 | zcnd |  |-  ( j e. ( 0 ... M ) -> j e. CC ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> j e. CC ) | 
						
							| 24 | 20 23 | cxpcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( _e ^c j ) e. CC ) | 
						
							| 25 | 17 24 | mulcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( _e ^c j ) ) e. CC ) | 
						
							| 26 | 19 | a1i |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> _e e. CC ) | 
						
							| 27 |  | elioore |  |-  ( x e. ( 0 (,) j ) -> x e. RR ) | 
						
							| 28 | 27 | recnd |  |-  ( x e. ( 0 (,) j ) -> x e. CC ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> x e. CC ) | 
						
							| 30 | 29 | negcld |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> -u x e. CC ) | 
						
							| 31 | 26 30 | cxpcld |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) e. CC ) | 
						
							| 32 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 33 | 32 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 34 | 33 4 6 | etransclem8 |  |-  ( ph -> F : RR --> CC ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ x e. ( 0 (,) j ) ) -> F : RR --> CC ) | 
						
							| 36 | 27 | adantl |  |-  ( ( ph /\ x e. ( 0 (,) j ) ) -> x e. RR ) | 
						
							| 37 | 35 36 | ffvelcdmd |  |-  ( ( ph /\ x e. ( 0 (,) j ) ) -> ( F ` x ) e. CC ) | 
						
							| 38 | 37 | adantlr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( F ` x ) e. CC ) | 
						
							| 39 | 31 38 | mulcld |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) | 
						
							| 40 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 41 | 40 | a1i |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> RR e. { RR , CC } ) | 
						
							| 42 |  | reopn |  |-  RR e. ( topGen ` ran (,) ) | 
						
							| 43 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 44 | 42 43 | eleqtri |  |-  RR e. ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 45 | 44 | a1i |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 46 | 4 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> P e. NN ) | 
						
							| 47 | 5 | nnnn0d |  |-  ( ph -> M e. NN0 ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> M e. NN0 ) | 
						
							| 49 |  | etransclem6 |  |-  ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ h e. ( 1 ... M ) ( ( y - h ) ^ P ) ) ) | 
						
							| 50 |  | etransclem6 |  |-  ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ h e. ( 1 ... M ) ( ( y - h ) ^ P ) ) ) = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) ) | 
						
							| 51 | 6 49 50 | 3eqtri |  |-  F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) ) | 
						
							| 52 |  | 0red |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. RR ) | 
						
							| 53 | 21 | zred |  |-  ( j e. ( 0 ... M ) -> j e. RR ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> j e. RR ) | 
						
							| 55 | 41 45 46 48 51 52 54 | etransclem18 |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. L^1 ) | 
						
							| 56 | 39 55 | itgcl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x e. CC ) | 
						
							| 57 | 25 56 | mulcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) e. CC ) | 
						
							| 58 | 12 57 | fsumcl |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) e. CC ) | 
						
							| 59 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 60 | 4 59 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 61 | 60 | faccld |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. NN ) | 
						
							| 62 | 61 | nncnd |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. CC ) | 
						
							| 63 | 61 | nnne0d |  |-  ( ph -> ( ! ` ( P - 1 ) ) =/= 0 ) | 
						
							| 64 | 58 62 63 | absdivd |  |-  ( ph -> ( abs ` ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) / ( ! ` ( P - 1 ) ) ) ) = ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( abs ` ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 65 | 61 | nnred |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. RR ) | 
						
							| 66 | 61 | nnnn0d |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. NN0 ) | 
						
							| 67 | 66 | nn0ge0d |  |-  ( ph -> 0 <_ ( ! ` ( P - 1 ) ) ) | 
						
							| 68 | 65 67 | absidd |  |-  ( ph -> ( abs ` ( ! ` ( P - 1 ) ) ) = ( ! ` ( P - 1 ) ) ) | 
						
							| 69 | 68 | oveq2d |  |-  ( ph -> ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( abs ` ( ! ` ( P - 1 ) ) ) ) = ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 70 | 11 64 69 | 3eqtrd |  |-  ( ph -> ( abs ` K ) = ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 71 | 2 58 | eqeltrid |  |-  ( ph -> L e. CC ) | 
						
							| 72 | 71 62 63 | divcld |  |-  ( ph -> ( L / ( ! ` ( P - 1 ) ) ) e. CC ) | 
						
							| 73 | 3 72 | eqeltrid |  |-  ( ph -> K e. CC ) | 
						
							| 74 | 73 | abscld |  |-  ( ph -> ( abs ` K ) e. RR ) | 
						
							| 75 | 70 74 | eqeltrrd |  |-  ( ph -> ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) e. RR ) | 
						
							| 76 | 5 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 77 | 4 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 78 | 76 77 | reexpcld |  |-  ( ph -> ( M ^ P ) e. RR ) | 
						
							| 79 |  | peano2nn0 |  |-  ( M e. NN0 -> ( M + 1 ) e. NN0 ) | 
						
							| 80 | 47 79 | syl |  |-  ( ph -> ( M + 1 ) e. NN0 ) | 
						
							| 81 | 78 80 | reexpcld |  |-  ( ph -> ( ( M ^ P ) ^ ( M + 1 ) ) e. RR ) | 
						
							| 82 | 81 | recnd |  |-  ( ph -> ( ( M ^ P ) ^ ( M + 1 ) ) e. CC ) | 
						
							| 83 | 5 | nncnd |  |-  ( ph -> M e. CC ) | 
						
							| 84 | 82 83 | mulcomd |  |-  ( ph -> ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) = ( M x. ( ( M ^ P ) ^ ( M + 1 ) ) ) ) | 
						
							| 85 | 4 | nncnd |  |-  ( ph -> P e. CC ) | 
						
							| 86 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 87 | 85 86 | npcand |  |-  ( ph -> ( ( P - 1 ) + 1 ) = P ) | 
						
							| 88 | 87 | eqcomd |  |-  ( ph -> P = ( ( P - 1 ) + 1 ) ) | 
						
							| 89 | 88 | oveq2d |  |-  ( ph -> ( ( M ^ ( M + 1 ) ) ^ P ) = ( ( M ^ ( M + 1 ) ) ^ ( ( P - 1 ) + 1 ) ) ) | 
						
							| 90 | 80 | nn0cnd |  |-  ( ph -> ( M + 1 ) e. CC ) | 
						
							| 91 | 90 85 | mulcomd |  |-  ( ph -> ( ( M + 1 ) x. P ) = ( P x. ( M + 1 ) ) ) | 
						
							| 92 | 91 | oveq2d |  |-  ( ph -> ( M ^ ( ( M + 1 ) x. P ) ) = ( M ^ ( P x. ( M + 1 ) ) ) ) | 
						
							| 93 | 83 77 80 | expmuld |  |-  ( ph -> ( M ^ ( ( M + 1 ) x. P ) ) = ( ( M ^ ( M + 1 ) ) ^ P ) ) | 
						
							| 94 | 83 80 77 | expmuld |  |-  ( ph -> ( M ^ ( P x. ( M + 1 ) ) ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) | 
						
							| 95 | 92 93 94 | 3eqtr3d |  |-  ( ph -> ( ( M ^ ( M + 1 ) ) ^ P ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) | 
						
							| 96 | 76 80 | reexpcld |  |-  ( ph -> ( M ^ ( M + 1 ) ) e. RR ) | 
						
							| 97 | 96 | recnd |  |-  ( ph -> ( M ^ ( M + 1 ) ) e. CC ) | 
						
							| 98 | 97 60 | expp1d |  |-  ( ph -> ( ( M ^ ( M + 1 ) ) ^ ( ( P - 1 ) + 1 ) ) = ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M ^ ( M + 1 ) ) ) ) | 
						
							| 99 | 89 95 98 | 3eqtr3d |  |-  ( ph -> ( ( M ^ P ) ^ ( M + 1 ) ) = ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M ^ ( M + 1 ) ) ) ) | 
						
							| 100 | 99 | oveq2d |  |-  ( ph -> ( M x. ( ( M ^ P ) ^ ( M + 1 ) ) ) = ( M x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M ^ ( M + 1 ) ) ) ) ) | 
						
							| 101 | 97 60 | expcld |  |-  ( ph -> ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) e. CC ) | 
						
							| 102 | 83 101 97 | mul12d |  |-  ( ph -> ( M x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M ^ ( M + 1 ) ) ) ) = ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) ) | 
						
							| 103 | 83 97 | mulcld |  |-  ( ph -> ( M x. ( M ^ ( M + 1 ) ) ) e. CC ) | 
						
							| 104 | 101 103 | mulcomd |  |-  ( ph -> ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) = ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) | 
						
							| 105 | 102 104 | eqtrd |  |-  ( ph -> ( M x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M ^ ( M + 1 ) ) ) ) = ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) | 
						
							| 106 | 84 100 105 | 3eqtrd |  |-  ( ph -> ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) = ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) | 
						
							| 107 | 106 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) = ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) | 
						
							| 108 | 107 | oveq2d |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) = ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) ) | 
						
							| 109 | 25 | abscld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) e. RR ) | 
						
							| 110 | 109 | recnd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) e. CC ) | 
						
							| 111 | 103 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( M x. ( M ^ ( M + 1 ) ) ) e. CC ) | 
						
							| 112 | 101 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) e. CC ) | 
						
							| 113 | 110 111 112 | mulassd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) = ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) ) | 
						
							| 114 | 108 113 | eqtr4d |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) = ( ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) | 
						
							| 115 | 114 | sumeq2dv |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) = sum_ j e. ( 0 ... M ) ( ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) | 
						
							| 116 | 110 111 | mulcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. CC ) | 
						
							| 117 | 12 101 116 | fsummulc1 |  |-  ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) = sum_ j e. ( 0 ... M ) ( ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) | 
						
							| 118 | 115 117 | eqtr4d |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) = ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) | 
						
							| 119 | 118 | oveq1d |  |-  ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) / ( ! ` ( P - 1 ) ) ) = ( ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 120 | 12 116 | fsumcl |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. CC ) | 
						
							| 121 | 120 101 62 63 | divassd |  |-  ( ph -> ( ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) / ( ! ` ( P - 1 ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 122 | 119 121 | eqtrd |  |-  ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) / ( ! ` ( P - 1 ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 123 | 81 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( M ^ P ) ^ ( M + 1 ) ) e. RR ) | 
						
							| 124 | 76 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> M e. RR ) | 
						
							| 125 | 123 124 | remulcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) e. RR ) | 
						
							| 126 | 109 125 | remulcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) e. RR ) | 
						
							| 127 | 12 126 | fsumrecl |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) e. RR ) | 
						
							| 128 | 127 61 | nndivred |  |-  ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) / ( ! ` ( P - 1 ) ) ) e. RR ) | 
						
							| 129 | 122 128 | eqeltrrd |  |-  ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) e. RR ) | 
						
							| 130 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 131 | 58 | abscld |  |-  ( ph -> ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) e. RR ) | 
						
							| 132 | 61 | nnrpd |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. RR+ ) | 
						
							| 133 | 57 | abscld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) e. RR ) | 
						
							| 134 | 12 133 | fsumrecl |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) e. RR ) | 
						
							| 135 | 12 57 | fsumabs |  |-  ( ph -> ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ sum_ j e. ( 0 ... M ) ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) ) | 
						
							| 136 | 81 | ad2antrr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( M ^ P ) ^ ( M + 1 ) ) e. RR ) | 
						
							| 137 |  | ioombl |  |-  ( 0 (,) j ) e. dom vol | 
						
							| 138 | 137 | a1i |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 (,) j ) e. dom vol ) | 
						
							| 139 |  | 0red |  |-  ( j e. ( 0 ... M ) -> 0 e. RR ) | 
						
							| 140 |  | elfzle1 |  |-  ( j e. ( 0 ... M ) -> 0 <_ j ) | 
						
							| 141 |  | volioo |  |-  ( ( 0 e. RR /\ j e. RR /\ 0 <_ j ) -> ( vol ` ( 0 (,) j ) ) = ( j - 0 ) ) | 
						
							| 142 | 139 53 140 141 | syl3anc |  |-  ( j e. ( 0 ... M ) -> ( vol ` ( 0 (,) j ) ) = ( j - 0 ) ) | 
						
							| 143 | 53 139 | resubcld |  |-  ( j e. ( 0 ... M ) -> ( j - 0 ) e. RR ) | 
						
							| 144 | 142 143 | eqeltrd |  |-  ( j e. ( 0 ... M ) -> ( vol ` ( 0 (,) j ) ) e. RR ) | 
						
							| 145 | 144 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( vol ` ( 0 (,) j ) ) e. RR ) | 
						
							| 146 | 82 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( M ^ P ) ^ ( M + 1 ) ) e. CC ) | 
						
							| 147 |  | iblconstmpt |  |-  ( ( ( 0 (,) j ) e. dom vol /\ ( vol ` ( 0 (,) j ) ) e. RR /\ ( ( M ^ P ) ^ ( M + 1 ) ) e. CC ) -> ( x e. ( 0 (,) j ) |-> ( ( M ^ P ) ^ ( M + 1 ) ) ) e. L^1 ) | 
						
							| 148 | 138 145 146 147 | syl3anc |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> ( ( M ^ P ) ^ ( M + 1 ) ) ) e. L^1 ) | 
						
							| 149 | 136 148 | itgrecl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x e. RR ) | 
						
							| 150 | 109 149 | remulcld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) e. RR ) | 
						
							| 151 | 12 150 | fsumrecl |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) e. RR ) | 
						
							| 152 | 25 56 | absmuld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) = ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( abs ` S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) ) | 
						
							| 153 | 56 | abscld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) e. RR ) | 
						
							| 154 | 25 | absge0d |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> 0 <_ ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) ) | 
						
							| 155 | 39 | abscld |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. RR ) | 
						
							| 156 | 39 55 | iblabs |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) e. L^1 ) | 
						
							| 157 | 155 156 | itgrecl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) _d x e. RR ) | 
						
							| 158 | 39 55 | itgabs |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) <_ S. ( 0 (,) j ) ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) _d x ) | 
						
							| 159 | 31 38 | absmuld |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) = ( ( abs ` ( _e ^c -u x ) ) x. ( abs ` ( F ` x ) ) ) ) | 
						
							| 160 | 31 | abscld |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( _e ^c -u x ) ) e. RR ) | 
						
							| 161 |  | 1red |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> 1 e. RR ) | 
						
							| 162 | 38 | abscld |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( F ` x ) ) e. RR ) | 
						
							| 163 | 31 | absge0d |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> 0 <_ ( abs ` ( _e ^c -u x ) ) ) | 
						
							| 164 | 38 | absge0d |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> 0 <_ ( abs ` ( F ` x ) ) ) | 
						
							| 165 | 18 | a1i |  |-  ( x e. ( 0 (,) j ) -> _e e. RR ) | 
						
							| 166 |  | 0re |  |-  0 e. RR | 
						
							| 167 |  | epos |  |-  0 < _e | 
						
							| 168 | 166 18 167 | ltleii |  |-  0 <_ _e | 
						
							| 169 | 168 | a1i |  |-  ( x e. ( 0 (,) j ) -> 0 <_ _e ) | 
						
							| 170 | 27 | renegcld |  |-  ( x e. ( 0 (,) j ) -> -u x e. RR ) | 
						
							| 171 | 165 169 170 | recxpcld |  |-  ( x e. ( 0 (,) j ) -> ( _e ^c -u x ) e. RR ) | 
						
							| 172 | 165 169 170 | cxpge0d |  |-  ( x e. ( 0 (,) j ) -> 0 <_ ( _e ^c -u x ) ) | 
						
							| 173 | 171 172 | absidd |  |-  ( x e. ( 0 (,) j ) -> ( abs ` ( _e ^c -u x ) ) = ( _e ^c -u x ) ) | 
						
							| 174 | 173 | adantl |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( _e ^c -u x ) ) = ( _e ^c -u x ) ) | 
						
							| 175 | 171 | adantl |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) e. RR ) | 
						
							| 176 |  | 1red |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 1 e. RR ) | 
						
							| 177 |  | 0xr |  |-  0 e. RR* | 
						
							| 178 | 177 | a1i |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 0 e. RR* ) | 
						
							| 179 | 53 | rexrd |  |-  ( j e. ( 0 ... M ) -> j e. RR* ) | 
						
							| 180 | 179 | adantr |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> j e. RR* ) | 
						
							| 181 |  | simpr |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> x e. ( 0 (,) j ) ) | 
						
							| 182 |  | ioogtlb |  |-  ( ( 0 e. RR* /\ j e. RR* /\ x e. ( 0 (,) j ) ) -> 0 < x ) | 
						
							| 183 | 178 180 181 182 | syl3anc |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 0 < x ) | 
						
							| 184 | 27 | adantl |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> x e. RR ) | 
						
							| 185 | 184 | lt0neg2d |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( 0 < x <-> -u x < 0 ) ) | 
						
							| 186 | 183 185 | mpbid |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> -u x < 0 ) | 
						
							| 187 | 18 | a1i |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> _e e. RR ) | 
						
							| 188 |  | 1lt2 |  |-  1 < 2 | 
						
							| 189 |  | egt2lt3 |  |-  ( 2 < _e /\ _e < 3 ) | 
						
							| 190 | 189 | simpli |  |-  2 < _e | 
						
							| 191 |  | 1re |  |-  1 e. RR | 
						
							| 192 |  | 2re |  |-  2 e. RR | 
						
							| 193 | 191 192 18 | lttri |  |-  ( ( 1 < 2 /\ 2 < _e ) -> 1 < _e ) | 
						
							| 194 | 188 190 193 | mp2an |  |-  1 < _e | 
						
							| 195 | 194 | a1i |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 1 < _e ) | 
						
							| 196 | 170 | adantl |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> -u x e. RR ) | 
						
							| 197 |  | 0red |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 0 e. RR ) | 
						
							| 198 | 187 195 196 197 | cxpltd |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( -u x < 0 <-> ( _e ^c -u x ) < ( _e ^c 0 ) ) ) | 
						
							| 199 | 186 198 | mpbid |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) < ( _e ^c 0 ) ) | 
						
							| 200 |  | cxp0 |  |-  ( _e e. CC -> ( _e ^c 0 ) = 1 ) | 
						
							| 201 | 19 200 | mp1i |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c 0 ) = 1 ) | 
						
							| 202 | 199 201 | breqtrd |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) < 1 ) | 
						
							| 203 | 175 176 202 | ltled |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) <_ 1 ) | 
						
							| 204 | 174 203 | eqbrtrd |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( _e ^c -u x ) ) <_ 1 ) | 
						
							| 205 | 204 | adantll |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( _e ^c -u x ) ) <_ 1 ) | 
						
							| 206 | 32 | a1i |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> RR C_ CC ) | 
						
							| 207 | 4 | ad2antrr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> P e. NN ) | 
						
							| 208 | 47 | ad2antrr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> M e. NN0 ) | 
						
							| 209 | 6 49 | eqtri |  |-  F = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ h e. ( 1 ... M ) ( ( y - h ) ^ P ) ) ) | 
						
							| 210 | 27 | adantl |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> x e. RR ) | 
						
							| 211 | 206 207 208 209 210 | etransclem13 |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( F ` x ) = prod_ h e. ( 0 ... M ) ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 212 | 211 | fveq2d |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( F ` x ) ) = ( abs ` prod_ h e. ( 0 ... M ) ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 213 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 214 | 27 | adantr |  |-  ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> x e. RR ) | 
						
							| 215 |  | nn0re |  |-  ( h e. NN0 -> h e. RR ) | 
						
							| 216 | 215 | adantl |  |-  ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> h e. RR ) | 
						
							| 217 | 214 216 | resubcld |  |-  ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> ( x - h ) e. RR ) | 
						
							| 218 | 217 | adantll |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. NN0 ) -> ( x - h ) e. RR ) | 
						
							| 219 | 60 77 | ifcld |  |-  ( ph -> if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 220 | 219 | ad3antrrr |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. NN0 ) -> if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 221 | 218 220 | reexpcld |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. NN0 ) -> ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) e. RR ) | 
						
							| 222 | 221 | recnd |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. NN0 ) -> ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) e. CC ) | 
						
							| 223 | 213 208 222 | fprodabs |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` prod_ h e. ( 0 ... M ) ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) = prod_ h e. ( 0 ... M ) ( abs ` ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 224 |  | elfznn0 |  |-  ( h e. ( 0 ... M ) -> h e. NN0 ) | 
						
							| 225 | 28 | adantr |  |-  ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> x e. CC ) | 
						
							| 226 |  | nn0cn |  |-  ( h e. NN0 -> h e. CC ) | 
						
							| 227 | 226 | adantl |  |-  ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> h e. CC ) | 
						
							| 228 | 225 227 | subcld |  |-  ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> ( x - h ) e. CC ) | 
						
							| 229 | 228 | adantll |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. NN0 ) -> ( x - h ) e. CC ) | 
						
							| 230 | 224 229 | sylan2 |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( x - h ) e. CC ) | 
						
							| 231 | 219 | ad3antrrr |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 232 | 230 231 | absexpd |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( abs ` ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) = ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 233 | 232 | prodeq2dv |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> prod_ h e. ( 0 ... M ) ( abs ` ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) = prod_ h e. ( 0 ... M ) ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 234 | 212 223 233 | 3eqtrd |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( F ` x ) ) = prod_ h e. ( 0 ... M ) ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 235 |  | nfv |  |-  F/ h ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) | 
						
							| 236 |  | fzfid |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( 0 ... M ) e. Fin ) | 
						
							| 237 | 224 228 | sylan2 |  |-  ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> ( x - h ) e. CC ) | 
						
							| 238 | 237 | abscld |  |-  ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> ( abs ` ( x - h ) ) e. RR ) | 
						
							| 239 | 238 | adantll |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( abs ` ( x - h ) ) e. RR ) | 
						
							| 240 | 239 231 | reexpcld |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) e. RR ) | 
						
							| 241 | 237 | absge0d |  |-  ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> 0 <_ ( abs ` ( x - h ) ) ) | 
						
							| 242 | 241 | adantll |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 0 <_ ( abs ` ( x - h ) ) ) | 
						
							| 243 | 239 231 242 | expge0d |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 0 <_ ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 244 | 78 | ad3antrrr |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( M ^ P ) e. RR ) | 
						
							| 245 | 76 | ad3antrrr |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> M e. RR ) | 
						
							| 246 | 245 231 | reexpcld |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( M ^ if ( h = 0 , ( P - 1 ) , P ) ) e. RR ) | 
						
							| 247 | 224 218 | sylan2 |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( x - h ) e. RR ) | 
						
							| 248 | 28 | adantr |  |-  ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> x e. CC ) | 
						
							| 249 | 224 227 | sylan2 |  |-  ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> h e. CC ) | 
						
							| 250 | 248 249 | negsubdi2d |  |-  ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> -u ( x - h ) = ( h - x ) ) | 
						
							| 251 | 250 | adantll |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> -u ( x - h ) = ( h - x ) ) | 
						
							| 252 | 224 | adantl |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> h e. NN0 ) | 
						
							| 253 | 252 | nn0red |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> h e. RR ) | 
						
							| 254 |  | 0red |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 0 e. RR ) | 
						
							| 255 | 210 | adantr |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> x e. RR ) | 
						
							| 256 |  | elfzle2 |  |-  ( h e. ( 0 ... M ) -> h <_ M ) | 
						
							| 257 | 256 | adantl |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> h <_ M ) | 
						
							| 258 | 197 184 183 | ltled |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 0 <_ x ) | 
						
							| 259 | 258 | adantll |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> 0 <_ x ) | 
						
							| 260 | 259 | adantr |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 0 <_ x ) | 
						
							| 261 | 253 254 245 255 257 260 | le2subd |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( h - x ) <_ ( M - 0 ) ) | 
						
							| 262 | 83 | subid1d |  |-  ( ph -> ( M - 0 ) = M ) | 
						
							| 263 | 262 | ad3antrrr |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( M - 0 ) = M ) | 
						
							| 264 | 261 263 | breqtrd |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( h - x ) <_ M ) | 
						
							| 265 | 251 264 | eqbrtrd |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> -u ( x - h ) <_ M ) | 
						
							| 266 | 247 245 265 | lenegcon1d |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> -u M <_ ( x - h ) ) | 
						
							| 267 |  | elfzel2 |  |-  ( j e. ( 0 ... M ) -> M e. ZZ ) | 
						
							| 268 | 267 | zred |  |-  ( j e. ( 0 ... M ) -> M e. RR ) | 
						
							| 269 | 268 | adantr |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> M e. RR ) | 
						
							| 270 | 53 | adantr |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> j e. RR ) | 
						
							| 271 |  | iooltub |  |-  ( ( 0 e. RR* /\ j e. RR* /\ x e. ( 0 (,) j ) ) -> x < j ) | 
						
							| 272 | 178 180 181 271 | syl3anc |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> x < j ) | 
						
							| 273 |  | elfzle2 |  |-  ( j e. ( 0 ... M ) -> j <_ M ) | 
						
							| 274 | 273 | adantr |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> j <_ M ) | 
						
							| 275 | 184 270 269 272 274 | ltletrd |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> x < M ) | 
						
							| 276 | 184 269 275 | ltled |  |-  ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> x <_ M ) | 
						
							| 277 | 276 | adantll |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> x <_ M ) | 
						
							| 278 | 277 | adantr |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> x <_ M ) | 
						
							| 279 | 252 | nn0ge0d |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 0 <_ h ) | 
						
							| 280 | 255 254 245 253 278 279 | le2subd |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( x - h ) <_ ( M - 0 ) ) | 
						
							| 281 | 280 263 | breqtrd |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( x - h ) <_ M ) | 
						
							| 282 | 247 245 | absled |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( ( abs ` ( x - h ) ) <_ M <-> ( -u M <_ ( x - h ) /\ ( x - h ) <_ M ) ) ) | 
						
							| 283 | 266 281 282 | mpbir2and |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( abs ` ( x - h ) ) <_ M ) | 
						
							| 284 |  | leexp1a |  |-  ( ( ( ( abs ` ( x - h ) ) e. RR /\ M e. RR /\ if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) /\ ( 0 <_ ( abs ` ( x - h ) ) /\ ( abs ` ( x - h ) ) <_ M ) ) -> ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ ( M ^ if ( h = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 285 | 239 245 231 242 283 284 | syl32anc |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ ( M ^ if ( h = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 286 | 5 | nnge1d |  |-  ( ph -> 1 <_ M ) | 
						
							| 287 | 286 | ad3antrrr |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 1 <_ M ) | 
						
							| 288 | 219 | nn0zd |  |-  ( ph -> if ( h = 0 , ( P - 1 ) , P ) e. ZZ ) | 
						
							| 289 | 77 | nn0zd |  |-  ( ph -> P e. ZZ ) | 
						
							| 290 |  | iftrue |  |-  ( h = 0 -> if ( h = 0 , ( P - 1 ) , P ) = ( P - 1 ) ) | 
						
							| 291 | 290 | adantl |  |-  ( ( ph /\ h = 0 ) -> if ( h = 0 , ( P - 1 ) , P ) = ( P - 1 ) ) | 
						
							| 292 | 4 | nnred |  |-  ( ph -> P e. RR ) | 
						
							| 293 | 292 | lem1d |  |-  ( ph -> ( P - 1 ) <_ P ) | 
						
							| 294 | 293 | adantr |  |-  ( ( ph /\ h = 0 ) -> ( P - 1 ) <_ P ) | 
						
							| 295 | 291 294 | eqbrtrd |  |-  ( ( ph /\ h = 0 ) -> if ( h = 0 , ( P - 1 ) , P ) <_ P ) | 
						
							| 296 |  | iffalse |  |-  ( -. h = 0 -> if ( h = 0 , ( P - 1 ) , P ) = P ) | 
						
							| 297 | 296 | adantl |  |-  ( ( ph /\ -. h = 0 ) -> if ( h = 0 , ( P - 1 ) , P ) = P ) | 
						
							| 298 | 292 | leidd |  |-  ( ph -> P <_ P ) | 
						
							| 299 | 298 | adantr |  |-  ( ( ph /\ -. h = 0 ) -> P <_ P ) | 
						
							| 300 | 297 299 | eqbrtrd |  |-  ( ( ph /\ -. h = 0 ) -> if ( h = 0 , ( P - 1 ) , P ) <_ P ) | 
						
							| 301 | 295 300 | pm2.61dan |  |-  ( ph -> if ( h = 0 , ( P - 1 ) , P ) <_ P ) | 
						
							| 302 |  | eluz2 |  |-  ( P e. ( ZZ>= ` if ( h = 0 , ( P - 1 ) , P ) ) <-> ( if ( h = 0 , ( P - 1 ) , P ) e. ZZ /\ P e. ZZ /\ if ( h = 0 , ( P - 1 ) , P ) <_ P ) ) | 
						
							| 303 | 288 289 301 302 | syl3anbrc |  |-  ( ph -> P e. ( ZZ>= ` if ( h = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 304 | 303 | ad3antrrr |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> P e. ( ZZ>= ` if ( h = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 305 | 245 287 304 | leexp2ad |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( M ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ ( M ^ P ) ) | 
						
							| 306 | 240 246 244 285 305 | letrd |  |-  ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ ( M ^ P ) ) | 
						
							| 307 | 235 236 240 243 244 306 | fprodle |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> prod_ h e. ( 0 ... M ) ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ prod_ h e. ( 0 ... M ) ( M ^ P ) ) | 
						
							| 308 | 78 | recnd |  |-  ( ph -> ( M ^ P ) e. CC ) | 
						
							| 309 |  | fprodconst |  |-  ( ( ( 0 ... M ) e. Fin /\ ( M ^ P ) e. CC ) -> prod_ h e. ( 0 ... M ) ( M ^ P ) = ( ( M ^ P ) ^ ( # ` ( 0 ... M ) ) ) ) | 
						
							| 310 | 12 308 309 | syl2anc |  |-  ( ph -> prod_ h e. ( 0 ... M ) ( M ^ P ) = ( ( M ^ P ) ^ ( # ` ( 0 ... M ) ) ) ) | 
						
							| 311 |  | hashfz0 |  |-  ( M e. NN0 -> ( # ` ( 0 ... M ) ) = ( M + 1 ) ) | 
						
							| 312 | 47 311 | syl |  |-  ( ph -> ( # ` ( 0 ... M ) ) = ( M + 1 ) ) | 
						
							| 313 | 312 | oveq2d |  |-  ( ph -> ( ( M ^ P ) ^ ( # ` ( 0 ... M ) ) ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) | 
						
							| 314 | 310 313 | eqtrd |  |-  ( ph -> prod_ h e. ( 0 ... M ) ( M ^ P ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) | 
						
							| 315 | 314 | ad2antrr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> prod_ h e. ( 0 ... M ) ( M ^ P ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) | 
						
							| 316 | 307 315 | breqtrd |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> prod_ h e. ( 0 ... M ) ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) | 
						
							| 317 | 234 316 | eqbrtrd |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( F ` x ) ) <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) | 
						
							| 318 | 160 161 162 136 163 164 205 317 | lemul12ad |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( abs ` ( _e ^c -u x ) ) x. ( abs ` ( F ` x ) ) ) <_ ( 1 x. ( ( M ^ P ) ^ ( M + 1 ) ) ) ) | 
						
							| 319 | 82 | mullidd |  |-  ( ph -> ( 1 x. ( ( M ^ P ) ^ ( M + 1 ) ) ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) | 
						
							| 320 | 319 | ad2antrr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( 1 x. ( ( M ^ P ) ^ ( M + 1 ) ) ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) | 
						
							| 321 | 318 320 | breqtrd |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( abs ` ( _e ^c -u x ) ) x. ( abs ` ( F ` x ) ) ) <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) | 
						
							| 322 | 159 321 | eqbrtrd |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) | 
						
							| 323 | 156 148 155 136 322 | itgle |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) _d x <_ S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) | 
						
							| 324 | 153 157 149 158 323 | letrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) <_ S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) | 
						
							| 325 | 153 149 109 154 324 | lemul2ad |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( abs ` S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) ) | 
						
							| 326 | 152 325 | eqbrtrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) ) | 
						
							| 327 | 12 133 150 326 | fsumle |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) ) | 
						
							| 328 |  | itgconst |  |-  ( ( ( 0 (,) j ) e. dom vol /\ ( vol ` ( 0 (,) j ) ) e. RR /\ ( ( M ^ P ) ^ ( M + 1 ) ) e. CC ) -> S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x = ( ( ( M ^ P ) ^ ( M + 1 ) ) x. ( vol ` ( 0 (,) j ) ) ) ) | 
						
							| 329 | 138 145 146 328 | syl3anc |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x = ( ( ( M ^ P ) ^ ( M + 1 ) ) x. ( vol ` ( 0 (,) j ) ) ) ) | 
						
							| 330 | 47 | nn0ge0d |  |-  ( ph -> 0 <_ M ) | 
						
							| 331 | 76 77 330 | expge0d |  |-  ( ph -> 0 <_ ( M ^ P ) ) | 
						
							| 332 | 78 80 331 | expge0d |  |-  ( ph -> 0 <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) | 
						
							| 333 | 332 | adantr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> 0 <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) | 
						
							| 334 | 22 | subid1d |  |-  ( j e. ( 0 ... M ) -> ( j - 0 ) = j ) | 
						
							| 335 | 142 334 | eqtrd |  |-  ( j e. ( 0 ... M ) -> ( vol ` ( 0 (,) j ) ) = j ) | 
						
							| 336 | 335 273 | eqbrtrd |  |-  ( j e. ( 0 ... M ) -> ( vol ` ( 0 (,) j ) ) <_ M ) | 
						
							| 337 | 336 | adantl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( vol ` ( 0 (,) j ) ) <_ M ) | 
						
							| 338 | 145 124 123 333 337 | lemul2ad |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( M ^ P ) ^ ( M + 1 ) ) x. ( vol ` ( 0 (,) j ) ) ) <_ ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) | 
						
							| 339 | 329 338 | eqbrtrd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x <_ ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) | 
						
							| 340 | 149 125 109 154 339 | lemul2ad |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) <_ ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) ) | 
						
							| 341 | 12 150 126 340 | fsumle |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) <_ sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) ) | 
						
							| 342 | 134 151 127 327 341 | letrd |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) ) | 
						
							| 343 | 131 134 127 135 342 | letrd |  |-  ( ph -> ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) ) | 
						
							| 344 | 131 127 132 343 | lediv1dd |  |-  ( ph -> ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) <_ ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 345 | 344 122 | breqtrd |  |-  ( ph -> ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) <_ ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 346 | 75 129 130 345 7 | lelttrd |  |-  ( ph -> ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) < 1 ) | 
						
							| 347 | 70 346 | eqbrtrd |  |-  ( ph -> ( abs ` K ) < 1 ) |