Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem23.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℤ ) |
2 |
|
etransclem23.l |
⊢ 𝐿 = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) |
3 |
|
etransclem23.k |
⊢ 𝐾 = ( 𝐿 / ( ! ‘ ( 𝑃 − 1 ) ) ) |
4 |
|
etransclem23.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
5 |
|
etransclem23.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
6 |
|
etransclem23.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
7 |
|
etransclem23.lt1 |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) < 1 ) |
8 |
2
|
oveq1i |
⊢ ( 𝐿 / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) |
9 |
3 8
|
eqtri |
⊢ 𝐾 = ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) |
10 |
9
|
fveq2i |
⊢ ( abs ‘ 𝐾 ) = ( abs ‘ ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( abs ‘ 𝐾 ) = ( abs ‘ ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) |
12 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ Fin ) |
13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝐴 : ℕ0 ⟶ ℤ ) |
14 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℕ0 ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ℕ0 ) |
16 |
13 15
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝐴 ‘ 𝑗 ) ∈ ℤ ) |
17 |
16
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
18 |
|
ere |
⊢ e ∈ ℝ |
19 |
18
|
recni |
⊢ e ∈ ℂ |
20 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → e ∈ ℂ ) |
21 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℤ ) |
22 |
21
|
zcnd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℂ ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ℂ ) |
24 |
20 23
|
cxpcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( e ↑𝑐 𝑗 ) ∈ ℂ ) |
25 |
17 24
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ∈ ℂ ) |
26 |
19
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → e ∈ ℂ ) |
27 |
|
elioore |
⊢ ( 𝑥 ∈ ( 0 (,) 𝑗 ) → 𝑥 ∈ ℝ ) |
28 |
27
|
recnd |
⊢ ( 𝑥 ∈ ( 0 (,) 𝑗 ) → 𝑥 ∈ ℂ ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑥 ∈ ℂ ) |
30 |
29
|
negcld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → - 𝑥 ∈ ℂ ) |
31 |
26 30
|
cxpcld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( e ↑𝑐 - 𝑥 ) ∈ ℂ ) |
32 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
33 |
32
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
34 |
33 4 6
|
etransclem8 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
36 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑥 ∈ ℝ ) |
37 |
35 36
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
38 |
37
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
39 |
31 38
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
40 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
41 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ℝ ∈ { ℝ , ℂ } ) |
42 |
|
reopn |
⊢ ℝ ∈ ( topGen ‘ ran (,) ) |
43 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
44 |
43
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
45 |
42 44
|
eleqtri |
⊢ ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
46 |
45
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
47 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑃 ∈ ℕ ) |
48 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑀 ∈ ℕ0 ) |
50 |
|
etransclem6 |
⊢ ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 ↑ ( 𝑃 − 1 ) ) · ∏ ℎ ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − ℎ ) ↑ 𝑃 ) ) ) |
51 |
|
etransclem6 |
⊢ ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 ↑ ( 𝑃 − 1 ) ) · ∏ ℎ ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − ℎ ) ↑ 𝑃 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑘 ) ↑ 𝑃 ) ) ) |
52 |
6 50 51
|
3eqtri |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑘 ) ↑ 𝑃 ) ) ) |
53 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 0 ∈ ℝ ) |
54 |
21
|
zred |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℝ ) |
55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ℝ ) |
56 |
41 46 47 49 52 53 55
|
etransclem18 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ∈ 𝐿1 ) |
57 |
39 56
|
itgcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ∈ ℂ ) |
58 |
25 57
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ∈ ℂ ) |
59 |
12 58
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ∈ ℂ ) |
60 |
|
nnm1nn0 |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 ) |
61 |
4 60
|
syl |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 ) |
62 |
61
|
faccld |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℕ ) |
63 |
62
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℂ ) |
64 |
62
|
nnne0d |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ≠ 0 ) |
65 |
59 63 64
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) = ( ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) / ( abs ‘ ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) |
66 |
62
|
nnred |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℝ ) |
67 |
62
|
nnnn0d |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℕ0 ) |
68 |
67
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ! ‘ ( 𝑃 − 1 ) ) ) |
69 |
66 68
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( ! ‘ ( 𝑃 − 1 ) ) ) = ( ! ‘ ( 𝑃 − 1 ) ) ) |
70 |
69
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) / ( abs ‘ ( ! ‘ ( 𝑃 − 1 ) ) ) ) = ( ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
71 |
11 65 70
|
3eqtrd |
⊢ ( 𝜑 → ( abs ‘ 𝐾 ) = ( ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
72 |
2 59
|
eqeltrid |
⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
73 |
72 63 64
|
divcld |
⊢ ( 𝜑 → ( 𝐿 / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℂ ) |
74 |
3 73
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
75 |
74
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐾 ) ∈ ℝ ) |
76 |
71 75
|
eqeltrrd |
⊢ ( 𝜑 → ( ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℝ ) |
77 |
5
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
78 |
4
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
79 |
77 78
|
reexpcld |
⊢ ( 𝜑 → ( 𝑀 ↑ 𝑃 ) ∈ ℝ ) |
80 |
|
peano2nn0 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ0 ) |
81 |
48 80
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ0 ) |
82 |
79 81
|
reexpcld |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ∈ ℝ ) |
83 |
82
|
recnd |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ∈ ℂ ) |
84 |
5
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
85 |
83 84
|
mulcomd |
⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) = ( 𝑀 · ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) ) |
86 |
4
|
nncnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
87 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
88 |
86 87
|
npcand |
⊢ ( 𝜑 → ( ( 𝑃 − 1 ) + 1 ) = 𝑃 ) |
89 |
88
|
eqcomd |
⊢ ( 𝜑 → 𝑃 = ( ( 𝑃 − 1 ) + 1 ) ) |
90 |
89
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑃 ) = ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( ( 𝑃 − 1 ) + 1 ) ) ) |
91 |
81
|
nn0cnd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℂ ) |
92 |
91 86
|
mulcomd |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) · 𝑃 ) = ( 𝑃 · ( 𝑀 + 1 ) ) ) |
93 |
92
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 ↑ ( ( 𝑀 + 1 ) · 𝑃 ) ) = ( 𝑀 ↑ ( 𝑃 · ( 𝑀 + 1 ) ) ) ) |
94 |
84 78 81
|
expmuld |
⊢ ( 𝜑 → ( 𝑀 ↑ ( ( 𝑀 + 1 ) · 𝑃 ) ) = ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑃 ) ) |
95 |
84 81 78
|
expmuld |
⊢ ( 𝜑 → ( 𝑀 ↑ ( 𝑃 · ( 𝑀 + 1 ) ) ) = ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) |
96 |
93 94 95
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑃 ) = ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) |
97 |
77 81
|
reexpcld |
⊢ ( 𝜑 → ( 𝑀 ↑ ( 𝑀 + 1 ) ) ∈ ℝ ) |
98 |
97
|
recnd |
⊢ ( 𝜑 → ( 𝑀 ↑ ( 𝑀 + 1 ) ) ∈ ℂ ) |
99 |
98 61
|
expp1d |
⊢ ( 𝜑 → ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( ( 𝑃 − 1 ) + 1 ) ) = ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) |
100 |
90 96 99
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) = ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) |
101 |
100
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 · ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) = ( 𝑀 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) ) |
102 |
98 61
|
expcld |
⊢ ( 𝜑 → ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ∈ ℂ ) |
103 |
84 102 98
|
mul12d |
⊢ ( 𝜑 → ( 𝑀 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) = ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) ) |
104 |
84 98
|
mulcld |
⊢ ( 𝜑 → ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ∈ ℂ ) |
105 |
102 104
|
mulcomd |
⊢ ( 𝜑 → ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) = ( ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) · ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ) ) |
106 |
103 105
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) = ( ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) · ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ) ) |
107 |
85 101 106
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) = ( ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) · ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ) ) |
108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) = ( ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) · ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ) ) |
109 |
108
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) = ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) · ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ) ) ) |
110 |
25
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) ∈ ℝ ) |
111 |
110
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) ∈ ℂ ) |
112 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ∈ ℂ ) |
113 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ∈ ℂ ) |
114 |
111 112 113
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ) = ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) · ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ) ) ) |
115 |
109 114
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) = ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ) ) |
116 |
115
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ) ) |
117 |
111 112
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) ∈ ℂ ) |
118 |
12 102 117
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ) ) |
119 |
116 118
|
eqtr4d |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ) ) |
120 |
119
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
121 |
12 117
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) ∈ ℂ ) |
122 |
121 102 63 64
|
divassd |
⊢ ( 𝜑 → ( ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) |
123 |
120 122
|
eqtrd |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) |
124 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ∈ ℝ ) |
125 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑀 ∈ ℝ ) |
126 |
124 125
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ∈ ℝ ) |
127 |
110 126
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) ∈ ℝ ) |
128 |
12 127
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) ∈ ℝ ) |
129 |
128 62
|
nndivred |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℝ ) |
130 |
123 129
|
eqeltrrd |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ∈ ℝ ) |
131 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
132 |
59
|
abscld |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) ∈ ℝ ) |
133 |
62
|
nnrpd |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℝ+ ) |
134 |
58
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( abs ‘ ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) ∈ ℝ ) |
135 |
12 134
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( abs ‘ ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) ∈ ℝ ) |
136 |
12 58
|
fsumabs |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) ≤ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( abs ‘ ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) ) |
137 |
82
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ∈ ℝ ) |
138 |
|
ioombl |
⊢ ( 0 (,) 𝑗 ) ∈ dom vol |
139 |
138
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 0 (,) 𝑗 ) ∈ dom vol ) |
140 |
|
0red |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 0 ∈ ℝ ) |
141 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 0 ≤ 𝑗 ) |
142 |
|
volioo |
⊢ ( ( 0 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 0 ≤ 𝑗 ) → ( vol ‘ ( 0 (,) 𝑗 ) ) = ( 𝑗 − 0 ) ) |
143 |
140 54 141 142
|
syl3anc |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( vol ‘ ( 0 (,) 𝑗 ) ) = ( 𝑗 − 0 ) ) |
144 |
54 140
|
resubcld |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 − 0 ) ∈ ℝ ) |
145 |
143 144
|
eqeltrd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( vol ‘ ( 0 (,) 𝑗 ) ) ∈ ℝ ) |
146 |
145
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( vol ‘ ( 0 (,) 𝑗 ) ) ∈ ℝ ) |
147 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ∈ ℂ ) |
148 |
|
iblconstmpt |
⊢ ( ( ( 0 (,) 𝑗 ) ∈ dom vol ∧ ( vol ‘ ( 0 (,) 𝑗 ) ) ∈ ℝ ∧ ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ∈ ℂ ) → ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) ∈ 𝐿1 ) |
149 |
139 146 147 148
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) ∈ 𝐿1 ) |
150 |
137 149
|
itgrecl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) d 𝑥 ∈ ℝ ) |
151 |
110 150
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) d 𝑥 ) ∈ ℝ ) |
152 |
12 151
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) d 𝑥 ) ∈ ℝ ) |
153 |
25 57
|
absmuld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( abs ‘ ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) = ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( abs ‘ ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) ) |
154 |
57
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( abs ‘ ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ∈ ℝ ) |
155 |
25
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 0 ≤ ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) ) |
156 |
39
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( abs ‘ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℝ ) |
157 |
39 56
|
iblabs |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( abs ‘ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ 𝐿1 ) |
158 |
156 157
|
itgrecl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ∫ ( 0 (,) 𝑗 ) ( abs ‘ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) d 𝑥 ∈ ℝ ) |
159 |
39 56
|
itgabs |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( abs ‘ ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ≤ ∫ ( 0 (,) 𝑗 ) ( abs ‘ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) d 𝑥 ) |
160 |
31 38
|
absmuld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( abs ‘ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) = ( ( abs ‘ ( e ↑𝑐 - 𝑥 ) ) · ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
161 |
31
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( abs ‘ ( e ↑𝑐 - 𝑥 ) ) ∈ ℝ ) |
162 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 1 ∈ ℝ ) |
163 |
38
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
164 |
31
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 0 ≤ ( abs ‘ ( e ↑𝑐 - 𝑥 ) ) ) |
165 |
38
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
166 |
18
|
a1i |
⊢ ( 𝑥 ∈ ( 0 (,) 𝑗 ) → e ∈ ℝ ) |
167 |
|
0re |
⊢ 0 ∈ ℝ |
168 |
|
epos |
⊢ 0 < e |
169 |
167 18 168
|
ltleii |
⊢ 0 ≤ e |
170 |
169
|
a1i |
⊢ ( 𝑥 ∈ ( 0 (,) 𝑗 ) → 0 ≤ e ) |
171 |
27
|
renegcld |
⊢ ( 𝑥 ∈ ( 0 (,) 𝑗 ) → - 𝑥 ∈ ℝ ) |
172 |
166 170 171
|
recxpcld |
⊢ ( 𝑥 ∈ ( 0 (,) 𝑗 ) → ( e ↑𝑐 - 𝑥 ) ∈ ℝ ) |
173 |
166 170 171
|
cxpge0d |
⊢ ( 𝑥 ∈ ( 0 (,) 𝑗 ) → 0 ≤ ( e ↑𝑐 - 𝑥 ) ) |
174 |
172 173
|
absidd |
⊢ ( 𝑥 ∈ ( 0 (,) 𝑗 ) → ( abs ‘ ( e ↑𝑐 - 𝑥 ) ) = ( e ↑𝑐 - 𝑥 ) ) |
175 |
174
|
adantl |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( abs ‘ ( e ↑𝑐 - 𝑥 ) ) = ( e ↑𝑐 - 𝑥 ) ) |
176 |
172
|
adantl |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( e ↑𝑐 - 𝑥 ) ∈ ℝ ) |
177 |
|
1red |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 1 ∈ ℝ ) |
178 |
|
0xr |
⊢ 0 ∈ ℝ* |
179 |
178
|
a1i |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 0 ∈ ℝ* ) |
180 |
54
|
rexrd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℝ* ) |
181 |
180
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑗 ∈ ℝ* ) |
182 |
|
simpr |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑥 ∈ ( 0 (,) 𝑗 ) ) |
183 |
|
ioogtlb |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑗 ∈ ℝ* ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 0 < 𝑥 ) |
184 |
179 181 182 183
|
syl3anc |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 0 < 𝑥 ) |
185 |
27
|
adantl |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑥 ∈ ℝ ) |
186 |
185
|
lt0neg2d |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( 0 < 𝑥 ↔ - 𝑥 < 0 ) ) |
187 |
184 186
|
mpbid |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → - 𝑥 < 0 ) |
188 |
18
|
a1i |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → e ∈ ℝ ) |
189 |
|
1lt2 |
⊢ 1 < 2 |
190 |
|
egt2lt3 |
⊢ ( 2 < e ∧ e < 3 ) |
191 |
190
|
simpli |
⊢ 2 < e |
192 |
|
1re |
⊢ 1 ∈ ℝ |
193 |
|
2re |
⊢ 2 ∈ ℝ |
194 |
192 193 18
|
lttri |
⊢ ( ( 1 < 2 ∧ 2 < e ) → 1 < e ) |
195 |
189 191 194
|
mp2an |
⊢ 1 < e |
196 |
195
|
a1i |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 1 < e ) |
197 |
171
|
adantl |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → - 𝑥 ∈ ℝ ) |
198 |
|
0red |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 0 ∈ ℝ ) |
199 |
188 196 197 198
|
cxpltd |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( - 𝑥 < 0 ↔ ( e ↑𝑐 - 𝑥 ) < ( e ↑𝑐 0 ) ) ) |
200 |
187 199
|
mpbid |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( e ↑𝑐 - 𝑥 ) < ( e ↑𝑐 0 ) ) |
201 |
|
cxp0 |
⊢ ( e ∈ ℂ → ( e ↑𝑐 0 ) = 1 ) |
202 |
19 201
|
mp1i |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( e ↑𝑐 0 ) = 1 ) |
203 |
200 202
|
breqtrd |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( e ↑𝑐 - 𝑥 ) < 1 ) |
204 |
176 177 203
|
ltled |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( e ↑𝑐 - 𝑥 ) ≤ 1 ) |
205 |
175 204
|
eqbrtrd |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( abs ‘ ( e ↑𝑐 - 𝑥 ) ) ≤ 1 ) |
206 |
205
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( abs ‘ ( e ↑𝑐 - 𝑥 ) ) ≤ 1 ) |
207 |
32
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ℝ ⊆ ℂ ) |
208 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑃 ∈ ℕ ) |
209 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑀 ∈ ℕ0 ) |
210 |
6 50
|
eqtri |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 ↑ ( 𝑃 − 1 ) ) · ∏ ℎ ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − ℎ ) ↑ 𝑃 ) ) ) |
211 |
27
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑥 ∈ ℝ ) |
212 |
207 208 209 210 211
|
etransclem13 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( 𝐹 ‘ 𝑥 ) = ∏ ℎ ∈ ( 0 ... 𝑀 ) ( ( 𝑥 − ℎ ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
213 |
212
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ ∏ ℎ ∈ ( 0 ... 𝑀 ) ( ( 𝑥 − ℎ ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
214 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
215 |
27
|
adantr |
⊢ ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ∧ ℎ ∈ ℕ0 ) → 𝑥 ∈ ℝ ) |
216 |
|
nn0re |
⊢ ( ℎ ∈ ℕ0 → ℎ ∈ ℝ ) |
217 |
216
|
adantl |
⊢ ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ∧ ℎ ∈ ℕ0 ) → ℎ ∈ ℝ ) |
218 |
215 217
|
resubcld |
⊢ ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ∧ ℎ ∈ ℕ0 ) → ( 𝑥 − ℎ ) ∈ ℝ ) |
219 |
218
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ℕ0 ) → ( 𝑥 − ℎ ) ∈ ℝ ) |
220 |
61 78
|
ifcld |
⊢ ( 𝜑 → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
221 |
220
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ℕ0 ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
222 |
219 221
|
reexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ℕ0 ) → ( ( 𝑥 − ℎ ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ ℝ ) |
223 |
222
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ℕ0 ) → ( ( 𝑥 − ℎ ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ ℂ ) |
224 |
214 209 223
|
fprodabs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( abs ‘ ∏ ℎ ∈ ( 0 ... 𝑀 ) ( ( 𝑥 − ℎ ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) = ∏ ℎ ∈ ( 0 ... 𝑀 ) ( abs ‘ ( ( 𝑥 − ℎ ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
225 |
|
elfznn0 |
⊢ ( ℎ ∈ ( 0 ... 𝑀 ) → ℎ ∈ ℕ0 ) |
226 |
28
|
adantr |
⊢ ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ∧ ℎ ∈ ℕ0 ) → 𝑥 ∈ ℂ ) |
227 |
|
nn0cn |
⊢ ( ℎ ∈ ℕ0 → ℎ ∈ ℂ ) |
228 |
227
|
adantl |
⊢ ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ∧ ℎ ∈ ℕ0 ) → ℎ ∈ ℂ ) |
229 |
226 228
|
subcld |
⊢ ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ∧ ℎ ∈ ℕ0 ) → ( 𝑥 − ℎ ) ∈ ℂ ) |
230 |
229
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ℕ0 ) → ( 𝑥 − ℎ ) ∈ ℂ ) |
231 |
225 230
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 − ℎ ) ∈ ℂ ) |
232 |
220
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
233 |
231 232
|
absexpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( abs ‘ ( ( 𝑥 − ℎ ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) = ( ( abs ‘ ( 𝑥 − ℎ ) ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
234 |
233
|
prodeq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ∏ ℎ ∈ ( 0 ... 𝑀 ) ( abs ‘ ( ( 𝑥 − ℎ ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) = ∏ ℎ ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( 𝑥 − ℎ ) ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
235 |
213 224 234
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ∏ ℎ ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( 𝑥 − ℎ ) ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
236 |
|
nfv |
⊢ Ⅎ ℎ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) |
237 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( 0 ... 𝑀 ) ∈ Fin ) |
238 |
225 229
|
sylan2 |
⊢ ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 − ℎ ) ∈ ℂ ) |
239 |
238
|
abscld |
⊢ ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( abs ‘ ( 𝑥 − ℎ ) ) ∈ ℝ ) |
240 |
239
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( abs ‘ ( 𝑥 − ℎ ) ) ∈ ℝ ) |
241 |
240 232
|
reexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( ( abs ‘ ( 𝑥 − ℎ ) ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ ℝ ) |
242 |
238
|
absge0d |
⊢ ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → 0 ≤ ( abs ‘ ( 𝑥 − ℎ ) ) ) |
243 |
242
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → 0 ≤ ( abs ‘ ( 𝑥 − ℎ ) ) ) |
244 |
240 232 243
|
expge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → 0 ≤ ( ( abs ‘ ( 𝑥 − ℎ ) ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
245 |
79
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑀 ↑ 𝑃 ) ∈ ℝ ) |
246 |
77
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → 𝑀 ∈ ℝ ) |
247 |
246 232
|
reexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑀 ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ ℝ ) |
248 |
225 219
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 − ℎ ) ∈ ℝ ) |
249 |
28
|
adantr |
⊢ ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → 𝑥 ∈ ℂ ) |
250 |
225 228
|
sylan2 |
⊢ ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ℎ ∈ ℂ ) |
251 |
249 250
|
negsubdi2d |
⊢ ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → - ( 𝑥 − ℎ ) = ( ℎ − 𝑥 ) ) |
252 |
251
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → - ( 𝑥 − ℎ ) = ( ℎ − 𝑥 ) ) |
253 |
225
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ℎ ∈ ℕ0 ) |
254 |
253
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ℎ ∈ ℝ ) |
255 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → 0 ∈ ℝ ) |
256 |
211
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → 𝑥 ∈ ℝ ) |
257 |
|
elfzle2 |
⊢ ( ℎ ∈ ( 0 ... 𝑀 ) → ℎ ≤ 𝑀 ) |
258 |
257
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ℎ ≤ 𝑀 ) |
259 |
198 185 184
|
ltled |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 0 ≤ 𝑥 ) |
260 |
259
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 0 ≤ 𝑥 ) |
261 |
260
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → 0 ≤ 𝑥 ) |
262 |
254 255 246 256 258 261
|
le2subd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( ℎ − 𝑥 ) ≤ ( 𝑀 − 0 ) ) |
263 |
84
|
subid1d |
⊢ ( 𝜑 → ( 𝑀 − 0 ) = 𝑀 ) |
264 |
263
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑀 − 0 ) = 𝑀 ) |
265 |
262 264
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( ℎ − 𝑥 ) ≤ 𝑀 ) |
266 |
252 265
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → - ( 𝑥 − ℎ ) ≤ 𝑀 ) |
267 |
248 246 266
|
lenegcon1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → - 𝑀 ≤ ( 𝑥 − ℎ ) ) |
268 |
|
elfzel2 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℤ ) |
269 |
268
|
zred |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℝ ) |
270 |
269
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑀 ∈ ℝ ) |
271 |
54
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑗 ∈ ℝ ) |
272 |
|
iooltub |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑗 ∈ ℝ* ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑥 < 𝑗 ) |
273 |
179 181 182 272
|
syl3anc |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑥 < 𝑗 ) |
274 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ≤ 𝑀 ) |
275 |
274
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑗 ≤ 𝑀 ) |
276 |
185 271 270 273 275
|
ltletrd |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑥 < 𝑀 ) |
277 |
185 270 276
|
ltled |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑥 ≤ 𝑀 ) |
278 |
277
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑥 ≤ 𝑀 ) |
279 |
278
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → 𝑥 ≤ 𝑀 ) |
280 |
253
|
nn0ge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → 0 ≤ ℎ ) |
281 |
256 255 246 254 279 280
|
le2subd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 − ℎ ) ≤ ( 𝑀 − 0 ) ) |
282 |
281 264
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 − ℎ ) ≤ 𝑀 ) |
283 |
248 246
|
absled |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( ( abs ‘ ( 𝑥 − ℎ ) ) ≤ 𝑀 ↔ ( - 𝑀 ≤ ( 𝑥 − ℎ ) ∧ ( 𝑥 − ℎ ) ≤ 𝑀 ) ) ) |
284 |
267 282 283
|
mpbir2and |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( abs ‘ ( 𝑥 − ℎ ) ) ≤ 𝑀 ) |
285 |
|
leexp1a |
⊢ ( ( ( ( abs ‘ ( 𝑥 − ℎ ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) ∧ ( 0 ≤ ( abs ‘ ( 𝑥 − ℎ ) ) ∧ ( abs ‘ ( 𝑥 − ℎ ) ) ≤ 𝑀 ) ) → ( ( abs ‘ ( 𝑥 − ℎ ) ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ≤ ( 𝑀 ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
286 |
240 246 232 243 284 285
|
syl32anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( ( abs ‘ ( 𝑥 − ℎ ) ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ≤ ( 𝑀 ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
287 |
5
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑀 ) |
288 |
287
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → 1 ≤ 𝑀 ) |
289 |
220
|
nn0zd |
⊢ ( 𝜑 → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℤ ) |
290 |
78
|
nn0zd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
291 |
|
iftrue |
⊢ ( ℎ = 0 → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = ( 𝑃 − 1 ) ) |
292 |
291
|
adantl |
⊢ ( ( 𝜑 ∧ ℎ = 0 ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = ( 𝑃 − 1 ) ) |
293 |
4
|
nnred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
294 |
293
|
lem1d |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ≤ 𝑃 ) |
295 |
294
|
adantr |
⊢ ( ( 𝜑 ∧ ℎ = 0 ) → ( 𝑃 − 1 ) ≤ 𝑃 ) |
296 |
292 295
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ℎ = 0 ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ≤ 𝑃 ) |
297 |
|
iffalse |
⊢ ( ¬ ℎ = 0 → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = 𝑃 ) |
298 |
297
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ℎ = 0 ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) = 𝑃 ) |
299 |
293
|
leidd |
⊢ ( 𝜑 → 𝑃 ≤ 𝑃 ) |
300 |
299
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ℎ = 0 ) → 𝑃 ≤ 𝑃 ) |
301 |
298 300
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ ℎ = 0 ) → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ≤ 𝑃 ) |
302 |
296 301
|
pm2.61dan |
⊢ ( 𝜑 → if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ≤ 𝑃 ) |
303 |
|
eluz2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ↔ ( if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ≤ 𝑃 ) ) |
304 |
289 290 302 303
|
syl3anbrc |
⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
305 |
304
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → 𝑃 ∈ ( ℤ≥ ‘ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
306 |
246 288 305
|
leexp2ad |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( 𝑀 ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ≤ ( 𝑀 ↑ 𝑃 ) ) |
307 |
241 247 245 286 306
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) ∧ ℎ ∈ ( 0 ... 𝑀 ) ) → ( ( abs ‘ ( 𝑥 − ℎ ) ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ≤ ( 𝑀 ↑ 𝑃 ) ) |
308 |
236 237 241 244 245 307
|
fprodle |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ∏ ℎ ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( 𝑥 − ℎ ) ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ≤ ∏ ℎ ∈ ( 0 ... 𝑀 ) ( 𝑀 ↑ 𝑃 ) ) |
309 |
79
|
recnd |
⊢ ( 𝜑 → ( 𝑀 ↑ 𝑃 ) ∈ ℂ ) |
310 |
|
fprodconst |
⊢ ( ( ( 0 ... 𝑀 ) ∈ Fin ∧ ( 𝑀 ↑ 𝑃 ) ∈ ℂ ) → ∏ ℎ ∈ ( 0 ... 𝑀 ) ( 𝑀 ↑ 𝑃 ) = ( ( 𝑀 ↑ 𝑃 ) ↑ ( ♯ ‘ ( 0 ... 𝑀 ) ) ) ) |
311 |
12 309 310
|
syl2anc |
⊢ ( 𝜑 → ∏ ℎ ∈ ( 0 ... 𝑀 ) ( 𝑀 ↑ 𝑃 ) = ( ( 𝑀 ↑ 𝑃 ) ↑ ( ♯ ‘ ( 0 ... 𝑀 ) ) ) ) |
312 |
|
hashfz0 |
⊢ ( 𝑀 ∈ ℕ0 → ( ♯ ‘ ( 0 ... 𝑀 ) ) = ( 𝑀 + 1 ) ) |
313 |
48 312
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... 𝑀 ) ) = ( 𝑀 + 1 ) ) |
314 |
313
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 𝑃 ) ↑ ( ♯ ‘ ( 0 ... 𝑀 ) ) ) = ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) |
315 |
311 314
|
eqtrd |
⊢ ( 𝜑 → ∏ ℎ ∈ ( 0 ... 𝑀 ) ( 𝑀 ↑ 𝑃 ) = ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) |
316 |
315
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ∏ ℎ ∈ ( 0 ... 𝑀 ) ( 𝑀 ↑ 𝑃 ) = ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) |
317 |
308 316
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ∏ ℎ ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( 𝑥 − ℎ ) ) ↑ if ( ℎ = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ≤ ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) |
318 |
235 317
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) |
319 |
161 162 163 137 164 165 206 318
|
lemul12ad |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( ( abs ‘ ( e ↑𝑐 - 𝑥 ) ) · ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 1 · ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) ) |
320 |
83
|
mulid2d |
⊢ ( 𝜑 → ( 1 · ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) = ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) |
321 |
320
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( 1 · ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) = ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) |
322 |
319 321
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( ( abs ‘ ( e ↑𝑐 - 𝑥 ) ) · ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) |
323 |
160 322
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( abs ‘ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) |
324 |
157 149 156 137 323
|
itgle |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ∫ ( 0 (,) 𝑗 ) ( abs ‘ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) d 𝑥 ≤ ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) d 𝑥 ) |
325 |
154 158 150 159 324
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( abs ‘ ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ≤ ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) d 𝑥 ) |
326 |
154 150 110 155 325
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( abs ‘ ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) ≤ ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) d 𝑥 ) ) |
327 |
153 326
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( abs ‘ ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) ≤ ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) d 𝑥 ) ) |
328 |
12 134 151 327
|
fsumle |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( abs ‘ ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) ≤ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) d 𝑥 ) ) |
329 |
|
itgconst |
⊢ ( ( ( 0 (,) 𝑗 ) ∈ dom vol ∧ ( vol ‘ ( 0 (,) 𝑗 ) ) ∈ ℝ ∧ ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ∈ ℂ ) → ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) d 𝑥 = ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · ( vol ‘ ( 0 (,) 𝑗 ) ) ) ) |
330 |
139 146 147 329
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) d 𝑥 = ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · ( vol ‘ ( 0 (,) 𝑗 ) ) ) ) |
331 |
48
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
332 |
77 78 331
|
expge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝑀 ↑ 𝑃 ) ) |
333 |
79 81 332
|
expge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) |
334 |
333
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 0 ≤ ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) ) |
335 |
22
|
subid1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 − 0 ) = 𝑗 ) |
336 |
143 335
|
eqtrd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( vol ‘ ( 0 (,) 𝑗 ) ) = 𝑗 ) |
337 |
336 274
|
eqbrtrd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( vol ‘ ( 0 (,) 𝑗 ) ) ≤ 𝑀 ) |
338 |
337
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( vol ‘ ( 0 (,) 𝑗 ) ) ≤ 𝑀 ) |
339 |
146 125 124 334 338
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · ( vol ‘ ( 0 (,) 𝑗 ) ) ) ≤ ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) |
340 |
330 339
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) d 𝑥 ≤ ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) |
341 |
150 126 110 155 340
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) d 𝑥 ) ≤ ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) ) |
342 |
12 151 127 341
|
fsumle |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ∫ ( 0 (,) 𝑗 ) ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) d 𝑥 ) ≤ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) ) |
343 |
135 152 128 328 342
|
letrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( abs ‘ ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) ≤ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) ) |
344 |
132 135 128 136 343
|
letrd |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) ≤ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) ) |
345 |
132 128 133 344
|
lediv1dd |
⊢ ( 𝜑 → ( ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ≤ ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( ( ( 𝑀 ↑ 𝑃 ) ↑ ( 𝑀 + 1 ) ) · 𝑀 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
346 |
345 123
|
breqtrd |
⊢ ( 𝜑 → ( ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ≤ ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) |
347 |
76 130 131 346 7
|
lelttrd |
⊢ ( 𝜑 → ( ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) < 1 ) |
348 |
71 347
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ 𝐾 ) < 1 ) |