| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgle.1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 2 |
|
itgle.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
| 3 |
|
itgle.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 4 |
|
itgle.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 5 |
|
itgle.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
| 6 |
3
|
iblrelem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ∈ ℝ ) ) ) |
| 7 |
1 6
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ∈ ℝ ) ) |
| 8 |
7
|
simp2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ∈ ℝ ) |
| 9 |
4
|
iblrelem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ∈ ℝ ) ) ) |
| 10 |
2 9
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ∈ ℝ ) ) |
| 11 |
10
|
simp3d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ∈ ℝ ) |
| 12 |
10
|
simp2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ∈ ℝ ) |
| 13 |
7
|
simp3d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ∈ ℝ ) |
| 14 |
3
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 15 |
14
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 16 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ 𝐵 ) |
| 17 |
|
elxrge0 |
⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) |
| 18 |
15 16 17
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 19 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
| 20 |
19
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 21 |
18 20
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 22 |
21
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 23 |
4
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 𝐶 ∈ ℝ ) |
| 24 |
23
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 𝐶 ∈ ℝ* ) |
| 25 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 0 ≤ 𝐶 ) |
| 26 |
|
elxrge0 |
⊢ ( 𝐶 ∈ ( 0 [,] +∞ ) ↔ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) |
| 27 |
24 25 26
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 28 |
19
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 29 |
27 28
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 30 |
29
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 31 |
|
0re |
⊢ 0 ∈ ℝ |
| 32 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 33 |
31 4 32
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 34 |
|
ifcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
| 35 |
4 31 34
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
| 36 |
|
max2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 37 |
31 4 36
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 38 |
3 4 35 5 37
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 39 |
|
maxle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ↔ ( 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∧ 𝐵 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 40 |
31 3 35 39
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ↔ ( 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∧ 𝐵 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 41 |
33 38 40
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 42 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) = if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 44 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) = if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) = if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 46 |
41 43 45
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ) |
| 47 |
46
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ) ) |
| 48 |
|
0le0 |
⊢ 0 ≤ 0 |
| 49 |
48
|
a1i |
⊢ ( ¬ 𝑥 ∈ 𝐴 → 0 ≤ 0 ) |
| 50 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) = 0 ) |
| 51 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) = 0 ) |
| 52 |
49 50 51
|
3brtr4d |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ) |
| 53 |
47 52
|
pm2.61d1 |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ) |
| 54 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) |
| 55 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) |
| 56 |
53 54 55
|
3brtr4g |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) |
| 57 |
56
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) |
| 58 |
|
reex |
⊢ ℝ ∈ V |
| 59 |
58
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 60 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) |
| 61 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) |
| 62 |
59 21 29 60 61
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) |
| 63 |
57 62
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) |
| 64 |
|
itg2le |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) |
| 65 |
22 30 63 64
|
syl3anc |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) |
| 66 |
4
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ∈ ℝ ) |
| 67 |
66
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) ) → - 𝐶 ∈ ℝ ) |
| 68 |
67
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) ) → - 𝐶 ∈ ℝ* ) |
| 69 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) ) → 0 ≤ - 𝐶 ) |
| 70 |
|
elxrge0 |
⊢ ( - 𝐶 ∈ ( 0 [,] +∞ ) ↔ ( - 𝐶 ∈ ℝ* ∧ 0 ≤ - 𝐶 ) ) |
| 71 |
68 69 70
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) ) → - 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 72 |
19
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 73 |
71 72
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 74 |
73
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 75 |
3
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 76 |
75
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 ∈ ℝ ) |
| 77 |
76
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 ∈ ℝ* ) |
| 78 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → 0 ≤ - 𝐵 ) |
| 79 |
|
elxrge0 |
⊢ ( - 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( - 𝐵 ∈ ℝ* ∧ 0 ≤ - 𝐵 ) ) |
| 80 |
77 78 79
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 81 |
19
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 82 |
80 81
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 83 |
82
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 84 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 85 |
31 75 84
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 86 |
|
ifcl |
⊢ ( ( - 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) |
| 87 |
75 31 86
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) |
| 88 |
3 4
|
lenegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 𝐶 ↔ - 𝐶 ≤ - 𝐵 ) ) |
| 89 |
5 88
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ≤ - 𝐵 ) |
| 90 |
|
max2 |
⊢ ( ( 0 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → - 𝐵 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 91 |
31 75 90
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 92 |
66 75 87 89 91
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 93 |
|
maxle |
⊢ ( ( 0 ∈ ℝ ∧ - 𝐶 ∈ ℝ ∧ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ↔ ( 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∧ - 𝐶 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
| 94 |
31 66 87 93
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ↔ ( 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∧ - 𝐶 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
| 95 |
85 92 94
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 96 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) = if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
| 97 |
96
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) = if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
| 98 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 99 |
98
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) = if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
| 100 |
95 97 99
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) ) |
| 101 |
100
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) ) ) |
| 102 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) = 0 ) |
| 103 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) = 0 ) |
| 104 |
49 102 103
|
3brtr4d |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) ) |
| 105 |
101 104
|
pm2.61d1 |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) ) |
| 106 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) , 0 ) |
| 107 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) , 0 ) |
| 108 |
105 106 107
|
3brtr4g |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) |
| 109 |
108
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) |
| 110 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) |
| 111 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) |
| 112 |
59 73 82 110 111
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ≤ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) |
| 113 |
109 112
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) |
| 114 |
|
itg2le |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ) |
| 115 |
74 83 113 114
|
syl3anc |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ) |
| 116 |
8 11 12 13 65 115
|
le2subd |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ) ≤ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ) ) |
| 117 |
3 1
|
itgrevallem1 |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) ) ) |
| 118 |
4 2
|
itgrevallem1 |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) − ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐶 ) , - 𝐶 , 0 ) ) ) ) ) |
| 119 |
116 117 118
|
3brtr4d |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 ≤ ∫ 𝐴 𝐶 d 𝑥 ) |