Metamath Proof Explorer


Theorem itg2le

Description: If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg2le ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹r𝐺 ) → ( ∫2𝐹 ) ≤ ( ∫2𝐺 ) )

Proof

Step Hyp Ref Expression
1 reex ℝ ∈ V
2 1 a1i ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ∈ dom ∫1 ) → ℝ ∈ V )
3 i1ff ( ∈ dom ∫1 : ℝ ⟶ ℝ )
4 3 adantl ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ∈ dom ∫1 ) → : ℝ ⟶ ℝ )
5 ressxr ℝ ⊆ ℝ*
6 fss ( ( : ℝ ⟶ ℝ ∧ ℝ ⊆ ℝ* ) → : ℝ ⟶ ℝ* )
7 4 5 6 sylancl ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ∈ dom ∫1 ) → : ℝ ⟶ ℝ* )
8 simpll ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ∈ dom ∫1 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) )
9 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
10 fss ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → 𝐹 : ℝ ⟶ ℝ* )
11 8 9 10 sylancl ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ∈ dom ∫1 ) → 𝐹 : ℝ ⟶ ℝ* )
12 simplr ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ∈ dom ∫1 ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )
13 fss ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → 𝐺 : ℝ ⟶ ℝ* )
14 12 9 13 sylancl ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ∈ dom ∫1 ) → 𝐺 : ℝ ⟶ ℝ* )
15 xrletr ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ* ) → ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
16 15 adantl ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ∈ dom ∫1 ) ∧ ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ* ) ) → ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
17 2 7 11 14 16 caoftrn ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ∈ dom ∫1 ) → ( ( r𝐹𝐹r𝐺 ) → r𝐺 ) )
18 simplr ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ( ∈ dom ∫1r𝐺 ) ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) )
19 simprl ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ( ∈ dom ∫1r𝐺 ) ) → ∈ dom ∫1 )
20 simprr ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ( ∈ dom ∫1r𝐺 ) ) → r𝐺 )
21 itg2ub ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ∈ dom ∫1r𝐺 ) → ( ∫1 ) ≤ ( ∫2𝐺 ) )
22 18 19 20 21 syl3anc ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ( ∈ dom ∫1r𝐺 ) ) → ( ∫1 ) ≤ ( ∫2𝐺 ) )
23 22 expr ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ∈ dom ∫1 ) → ( r𝐺 → ( ∫1 ) ≤ ( ∫2𝐺 ) ) )
24 17 23 syld ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ∈ dom ∫1 ) → ( ( r𝐹𝐹r𝐺 ) → ( ∫1 ) ≤ ( ∫2𝐺 ) ) )
25 24 ancomsd ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ∈ dom ∫1 ) → ( ( 𝐹r𝐺r𝐹 ) → ( ∫1 ) ≤ ( ∫2𝐺 ) ) )
26 25 exp4b ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) → ( ∈ dom ∫1 → ( 𝐹r𝐺 → ( r𝐹 → ( ∫1 ) ≤ ( ∫2𝐺 ) ) ) ) )
27 26 com23 ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) → ( 𝐹r𝐺 → ( ∈ dom ∫1 → ( r𝐹 → ( ∫1 ) ≤ ( ∫2𝐺 ) ) ) ) )
28 27 3impia ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹r𝐺 ) → ( ∈ dom ∫1 → ( r𝐹 → ( ∫1 ) ≤ ( ∫2𝐺 ) ) ) )
29 28 ralrimiv ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹r𝐺 ) → ∀ ∈ dom ∫1 ( r𝐹 → ( ∫1 ) ≤ ( ∫2𝐺 ) ) )
30 simp1 ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹r𝐺 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) )
31 itg2cl ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2𝐺 ) ∈ ℝ* )
32 31 3ad2ant2 ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹r𝐺 ) → ( ∫2𝐺 ) ∈ ℝ* )
33 itg2leub ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2𝐺 ) ∈ ℝ* ) → ( ( ∫2𝐹 ) ≤ ( ∫2𝐺 ) ↔ ∀ ∈ dom ∫1 ( r𝐹 → ( ∫1 ) ≤ ( ∫2𝐺 ) ) ) )
34 30 32 33 syl2anc ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹r𝐺 ) → ( ( ∫2𝐹 ) ≤ ( ∫2𝐺 ) ↔ ∀ ∈ dom ∫1 ( r𝐹 → ( ∫1 ) ≤ ( ∫2𝐺 ) ) ) )
35 29 34 mpbird ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹r𝐺 ) → ( ∫2𝐹 ) ≤ ( ∫2𝐺 ) )