Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem21.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
2 |
|
etransclem21.x |
⊢ ( 𝜑 → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
3 |
|
etransclem21.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
4 |
|
etransclem21.h |
⊢ 𝐻 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
5 |
|
etransclem21.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ... 𝑀 ) ) |
6 |
|
etransclem21.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
7 |
|
etransclem21.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
8 |
1 2 3 4 5 6
|
etransclem17 |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝐽 ) ) ‘ 𝑁 ) = ( 𝑥 ∈ 𝑋 ↦ if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥 − 𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 − 𝐽 ) = ( 𝑌 − 𝐽 ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 − 𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) = ( ( 𝑌 − 𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑥 = 𝑌 → ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥 − 𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) = ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑌 − 𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) |
12 |
11
|
ifeq2d |
⊢ ( 𝑥 = 𝑌 → if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥 − 𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) = if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑌 − 𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑥 − 𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) = if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑌 − 𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) ) |
14 |
|
0cnd |
⊢ ( ( 𝜑 ∧ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → 0 ∈ ℂ ) |
15 |
|
nnm1nn0 |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 ) |
16 |
3 15
|
syl |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 ) |
17 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
18 |
16 17
|
ifcld |
⊢ ( 𝜑 → if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
19 |
18
|
faccld |
⊢ ( 𝜑 → ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ ℕ ) |
20 |
19
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ ℂ ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ ℂ ) |
22 |
18
|
nn0zd |
⊢ ( 𝜑 → if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℤ ) |
23 |
6
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
24 |
22 23
|
zsubcld |
⊢ ( 𝜑 → ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ∈ ℤ ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ∈ ℤ ) |
26 |
6
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → 𝑁 ∈ ℝ ) |
28 |
18
|
nn0red |
⊢ ( 𝜑 → if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℝ ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℝ ) |
30 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) |
31 |
27 29 30
|
nltled |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → 𝑁 ≤ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) |
32 |
29 27
|
subge0d |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( 0 ≤ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ↔ 𝑁 ≤ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
33 |
31 32
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → 0 ≤ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) |
34 |
|
elnn0z |
⊢ ( ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ∈ ℕ0 ↔ ( ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ∈ ℤ ∧ 0 ≤ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) |
35 |
25 33 34
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ∈ ℕ0 ) |
36 |
35
|
faccld |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ∈ ℕ ) |
37 |
36
|
nncnd |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ∈ ℂ ) |
38 |
36
|
nnne0d |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ≠ 0 ) |
39 |
21 37 38
|
divcld |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ∈ ℂ ) |
40 |
1 2
|
dvdmsscn |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
41 |
40 7
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
42 |
5
|
elfzelzd |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
43 |
42
|
zcnd |
⊢ ( 𝜑 → 𝐽 ∈ ℂ ) |
44 |
41 43
|
subcld |
⊢ ( 𝜑 → ( 𝑌 − 𝐽 ) ∈ ℂ ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( 𝑌 − 𝐽 ) ∈ ℂ ) |
46 |
45 35
|
expcld |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( ( 𝑌 − 𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ∈ ℂ ) |
47 |
39 46
|
mulcld |
⊢ ( ( 𝜑 ∧ ¬ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 ) → ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑌 − 𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ∈ ℂ ) |
48 |
14 47
|
ifclda |
⊢ ( 𝜑 → if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑌 − 𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) ∈ ℂ ) |
49 |
8 13 7 48
|
fvmptd |
⊢ ( 𝜑 → ( ( ( 𝑆 D𝑛 ( 𝐻 ‘ 𝐽 ) ) ‘ 𝑁 ) ‘ 𝑌 ) = if ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) < 𝑁 , 0 , ( ( ( ! ‘ if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) / ( ! ‘ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) · ( ( 𝑌 − 𝐽 ) ↑ ( if ( 𝐽 = 0 , ( 𝑃 − 1 ) , 𝑃 ) − 𝑁 ) ) ) ) ) |