Description: The N -th derivative of F applied to J is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | etransclem42.s | |- ( ph -> S e. { RR , CC } ) | |
| etransclem42.x | |- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | ||
| etransclem42.p | |- ( ph -> P e. NN ) | ||
| etransclem42.m | |- ( ph -> M e. NN0 ) | ||
| etransclem42.f | |- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | ||
| etransclem42.n | |- ( ph -> N e. NN0 ) | ||
| etransclem42.jx | |- ( ph -> J e. X ) | ||
| etransclem42.jz | |- ( ph -> J e. ZZ ) | ||
| Assertion | etransclem42 | |- ( ph -> ( ( ( S Dn F ) ` N ) ` J ) e. ZZ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | etransclem42.s |  |-  ( ph -> S e. { RR , CC } ) | |
| 2 | etransclem42.x | |- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | |
| 3 | etransclem42.p | |- ( ph -> P e. NN ) | |
| 4 | etransclem42.m | |- ( ph -> M e. NN0 ) | |
| 5 | etransclem42.f | |- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | |
| 6 | etransclem42.n | |- ( ph -> N e. NN0 ) | |
| 7 | etransclem42.jx | |- ( ph -> J e. X ) | |
| 8 | etransclem42.jz | |- ( ph -> J e. ZZ ) | |
| 9 | etransclem5 | |- ( k e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | |
| 10 | etransclem11 |  |-  ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) | |
| 11 | 1 2 3 4 5 6 9 7 8 10 | etransclem36 | |- ( ph -> ( ( ( S Dn F ) ` N ) ` J ) e. ZZ ) |