| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem43.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
etransclem43.x |
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 3 |
|
etransclem43.p |
|- ( ph -> P e. NN ) |
| 4 |
|
etransclem43.m |
|- ( ph -> M e. NN0 ) |
| 5 |
|
etransclem43.f |
|- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
| 6 |
|
etransclem43.g |
|- G = ( x e. X |-> sum_ i e. ( 0 ... R ) ( ( ( S Dn F ) ` i ) ` x ) ) |
| 7 |
1 2
|
dvdmsscn |
|- ( ph -> X C_ CC ) |
| 8 |
|
fzfid |
|- ( ph -> ( 0 ... R ) e. Fin ) |
| 9 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> S e. { RR , CC } ) |
| 10 |
2
|
adantr |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 11 |
3
|
adantr |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> P e. NN ) |
| 12 |
4
|
adantr |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> M e. NN0 ) |
| 13 |
|
elfznn0 |
|- ( i e. ( 0 ... R ) -> i e. NN0 ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> i e. NN0 ) |
| 15 |
9 10 11 12 5 14
|
etransclem33 |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( S Dn F ) ` i ) : X --> CC ) |
| 16 |
15
|
feqmptd |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( S Dn F ) ` i ) = ( x e. X |-> ( ( ( S Dn F ) ` i ) ` x ) ) ) |
| 17 |
9 10 11 12 5 14
|
etransclem40 |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( S Dn F ) ` i ) e. ( X -cn-> CC ) ) |
| 18 |
16 17
|
eqeltrrd |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( x e. X |-> ( ( ( S Dn F ) ` i ) ` x ) ) e. ( X -cn-> CC ) ) |
| 19 |
7 8 18
|
fsumcncf |
|- ( ph -> ( x e. X |-> sum_ i e. ( 0 ... R ) ( ( ( S Dn F ) ` i ) ` x ) ) e. ( X -cn-> CC ) ) |
| 20 |
6 19
|
eqeltrid |
|- ( ph -> G e. ( X -cn-> CC ) ) |