| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem44.a |
|- ( ph -> A : NN0 --> ZZ ) |
| 2 |
|
etransclem44.a0 |
|- ( ph -> ( A ` 0 ) =/= 0 ) |
| 3 |
|
etransclem44.m |
|- ( ph -> M e. NN0 ) |
| 4 |
|
etransclem44.p |
|- ( ph -> P e. Prime ) |
| 5 |
|
etransclem44.ap |
|- ( ph -> ( abs ` ( A ` 0 ) ) < P ) |
| 6 |
|
etransclem44.mp |
|- ( ph -> ( ! ` M ) < P ) |
| 7 |
|
etransclem44.f |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
| 8 |
|
etransclem44.k |
|- K = ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) |
| 9 |
8
|
a1i |
|- ( ph -> K = ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 10 |
|
nfv |
|- F/ k ph |
| 11 |
|
nfcv |
|- F/_ k ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) |
| 12 |
|
fzfi |
|- ( 0 ... M ) e. Fin |
| 13 |
|
fzfi |
|- ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) e. Fin |
| 14 |
|
xpfi |
|- ( ( ( 0 ... M ) e. Fin /\ ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) e. Fin ) -> ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin ) |
| 15 |
12 13 14
|
mp2an |
|- ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin |
| 16 |
15
|
a1i |
|- ( ph -> ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin ) |
| 17 |
1
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> A : NN0 --> ZZ ) |
| 18 |
|
fzssnn0 |
|- ( 0 ... M ) C_ NN0 |
| 19 |
|
xp1st |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 1st ` k ) e. ( 0 ... M ) ) |
| 20 |
18 19
|
sselid |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 1st ` k ) e. NN0 ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 1st ` k ) e. NN0 ) |
| 22 |
17 21
|
ffvelcdmd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( A ` ( 1st ` k ) ) e. ZZ ) |
| 23 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 24 |
23
|
a1i |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> RR e. { RR , CC } ) |
| 25 |
|
reopn |
|- RR e. ( topGen ` ran (,) ) |
| 26 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 27 |
25 26
|
eleqtri |
|- RR e. ( ( TopOpen ` CCfld ) |`t RR ) |
| 28 |
27
|
a1i |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 29 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 30 |
4 29
|
syl |
|- ( ph -> P e. NN ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> P e. NN ) |
| 32 |
3
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> M e. NN0 ) |
| 33 |
|
xp2nd |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 2nd ` k ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) |
| 34 |
|
elfznn0 |
|- ( ( 2nd ` k ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) -> ( 2nd ` k ) e. NN0 ) |
| 35 |
33 34
|
syl |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 2nd ` k ) e. NN0 ) |
| 36 |
35
|
adantl |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 2nd ` k ) e. NN0 ) |
| 37 |
21
|
nn0red |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 1st ` k ) e. RR ) |
| 38 |
21
|
nn0zd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 1st ` k ) e. ZZ ) |
| 39 |
24 28 31 32 7 36 37 38
|
etransclem42 |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. ZZ ) |
| 40 |
22 39
|
zmulcld |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. ZZ ) |
| 41 |
40
|
zcnd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) |
| 42 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 43 |
3 42
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
| 44 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
| 45 |
43 44
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
| 46 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 47 |
3
|
nn0zd |
|- ( ph -> M e. ZZ ) |
| 48 |
30
|
nnzd |
|- ( ph -> P e. ZZ ) |
| 49 |
47 48
|
zmulcld |
|- ( ph -> ( M x. P ) e. ZZ ) |
| 50 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
| 51 |
30 50
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
| 52 |
51
|
nn0zd |
|- ( ph -> ( P - 1 ) e. ZZ ) |
| 53 |
49 52
|
zaddcld |
|- ( ph -> ( ( M x. P ) + ( P - 1 ) ) e. ZZ ) |
| 54 |
51
|
nn0ge0d |
|- ( ph -> 0 <_ ( P - 1 ) ) |
| 55 |
30
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
| 56 |
3 55
|
nn0mulcld |
|- ( ph -> ( M x. P ) e. NN0 ) |
| 57 |
56
|
nn0ge0d |
|- ( ph -> 0 <_ ( M x. P ) ) |
| 58 |
51
|
nn0red |
|- ( ph -> ( P - 1 ) e. RR ) |
| 59 |
49
|
zred |
|- ( ph -> ( M x. P ) e. RR ) |
| 60 |
58 59
|
addge02d |
|- ( ph -> ( 0 <_ ( M x. P ) <-> ( P - 1 ) <_ ( ( M x. P ) + ( P - 1 ) ) ) ) |
| 61 |
57 60
|
mpbid |
|- ( ph -> ( P - 1 ) <_ ( ( M x. P ) + ( P - 1 ) ) ) |
| 62 |
46 53 52 54 61
|
elfzd |
|- ( ph -> ( P - 1 ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) |
| 63 |
|
opelxp |
|- ( <. 0 , ( P - 1 ) >. e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) <-> ( 0 e. ( 0 ... M ) /\ ( P - 1 ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) |
| 64 |
45 62 63
|
sylanbrc |
|- ( ph -> <. 0 , ( P - 1 ) >. e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) |
| 65 |
|
fveq2 |
|- ( k = <. 0 , ( P - 1 ) >. -> ( 1st ` k ) = ( 1st ` <. 0 , ( P - 1 ) >. ) ) |
| 66 |
|
0re |
|- 0 e. RR |
| 67 |
|
ovex |
|- ( P - 1 ) e. _V |
| 68 |
|
op1stg |
|- ( ( 0 e. RR /\ ( P - 1 ) e. _V ) -> ( 1st ` <. 0 , ( P - 1 ) >. ) = 0 ) |
| 69 |
66 67 68
|
mp2an |
|- ( 1st ` <. 0 , ( P - 1 ) >. ) = 0 |
| 70 |
65 69
|
eqtrdi |
|- ( k = <. 0 , ( P - 1 ) >. -> ( 1st ` k ) = 0 ) |
| 71 |
70
|
fveq2d |
|- ( k = <. 0 , ( P - 1 ) >. -> ( A ` ( 1st ` k ) ) = ( A ` 0 ) ) |
| 72 |
|
fveq2 |
|- ( k = <. 0 , ( P - 1 ) >. -> ( 2nd ` k ) = ( 2nd ` <. 0 , ( P - 1 ) >. ) ) |
| 73 |
|
op2ndg |
|- ( ( 0 e. RR /\ ( P - 1 ) e. _V ) -> ( 2nd ` <. 0 , ( P - 1 ) >. ) = ( P - 1 ) ) |
| 74 |
66 67 73
|
mp2an |
|- ( 2nd ` <. 0 , ( P - 1 ) >. ) = ( P - 1 ) |
| 75 |
72 74
|
eqtrdi |
|- ( k = <. 0 , ( P - 1 ) >. -> ( 2nd ` k ) = ( P - 1 ) ) |
| 76 |
75
|
fveq2d |
|- ( k = <. 0 , ( P - 1 ) >. -> ( ( RR Dn F ) ` ( 2nd ` k ) ) = ( ( RR Dn F ) ` ( P - 1 ) ) ) |
| 77 |
76 70
|
fveq12d |
|- ( k = <. 0 , ( P - 1 ) >. -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) = ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) |
| 78 |
71 77
|
oveq12d |
|- ( k = <. 0 , ( P - 1 ) >. -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) = ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) ) |
| 79 |
10 11 16 41 64 78
|
fsumsplit1 |
|- ( ph -> sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) = ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) + sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) ) |
| 80 |
79
|
oveq1d |
|- ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) + sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 81 |
18 45
|
sselid |
|- ( ph -> 0 e. NN0 ) |
| 82 |
1 81
|
ffvelcdmd |
|- ( ph -> ( A ` 0 ) e. ZZ ) |
| 83 |
23
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 84 |
27
|
a1i |
|- ( ph -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 85 |
66
|
a1i |
|- ( ph -> 0 e. RR ) |
| 86 |
83 84 30 3 7 51 85 46
|
etransclem42 |
|- ( ph -> ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) e. ZZ ) |
| 87 |
82 86
|
zmulcld |
|- ( ph -> ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) e. ZZ ) |
| 88 |
87
|
zcnd |
|- ( ph -> ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) e. CC ) |
| 89 |
|
difss |
|- ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) C_ ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) |
| 90 |
|
ssfi |
|- ( ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin /\ ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) C_ ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) e. Fin ) |
| 91 |
15 89 90
|
mp2an |
|- ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) e. Fin |
| 92 |
91
|
a1i |
|- ( ph -> ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) e. Fin ) |
| 93 |
|
eldifi |
|- ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) -> k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) |
| 94 |
93 40
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. ZZ ) |
| 95 |
92 94
|
fsumzcl |
|- ( ph -> sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. ZZ ) |
| 96 |
95
|
zcnd |
|- ( ph -> sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) |
| 97 |
51
|
faccld |
|- ( ph -> ( ! ` ( P - 1 ) ) e. NN ) |
| 98 |
97
|
nncnd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. CC ) |
| 99 |
97
|
nnne0d |
|- ( ph -> ( ! ` ( P - 1 ) ) =/= 0 ) |
| 100 |
88 96 98 99
|
divdird |
|- ( ph -> ( ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) + sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) + ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
| 101 |
9 80 100
|
3eqtrd |
|- ( ph -> K = ( ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) + ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
| 102 |
30
|
nnne0d |
|- ( ph -> P =/= 0 ) |
| 103 |
82
|
zcnd |
|- ( ph -> ( A ` 0 ) e. CC ) |
| 104 |
86
|
zcnd |
|- ( ph -> ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) e. CC ) |
| 105 |
103 104 98 99
|
divassd |
|- ( ph -> ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) = ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) |
| 106 |
|
etransclem5 |
|- ( k e. ( 0 ... M ) |-> ( y e. RR |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. RR |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
| 107 |
|
etransclem11 |
|- ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) |
| 108 |
83 84 30 3 7 51 106 107 45 85
|
etransclem37 |
|- ( ph -> ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) |
| 109 |
97
|
nnzd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. ZZ ) |
| 110 |
|
dvdsval2 |
|- ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ! ` ( P - 1 ) ) =/= 0 /\ ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) e. ZZ ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) <-> ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) |
| 111 |
109 99 86 110
|
syl3anc |
|- ( ph -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) <-> ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) |
| 112 |
108 111
|
mpbid |
|- ( ph -> ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
| 113 |
82 112
|
zmulcld |
|- ( ph -> ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) e. ZZ ) |
| 114 |
105 113
|
eqeltrd |
|- ( ph -> ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
| 115 |
93 41
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) |
| 116 |
92 98 115 99
|
fsumdivc |
|- ( ph -> ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 117 |
22
|
zcnd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( A ` ( 1st ` k ) ) e. CC ) |
| 118 |
93 117
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( A ` ( 1st ` k ) ) e. CC ) |
| 119 |
93 39
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. ZZ ) |
| 120 |
119
|
zcnd |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. CC ) |
| 121 |
98
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ! ` ( P - 1 ) ) e. CC ) |
| 122 |
99
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ! ` ( P - 1 ) ) =/= 0 ) |
| 123 |
118 120 121 122
|
divassd |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
| 124 |
93 22
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( A ` ( 1st ` k ) ) e. ZZ ) |
| 125 |
23
|
a1i |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> RR e. { RR , CC } ) |
| 126 |
27
|
a1i |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 127 |
30
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> P e. NN ) |
| 128 |
3
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> M e. NN0 ) |
| 129 |
93
|
adantl |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) |
| 130 |
129 35
|
syl |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( 2nd ` k ) e. NN0 ) |
| 131 |
129 19
|
syl |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( 1st ` k ) e. ( 0 ... M ) ) |
| 132 |
93 37
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( 1st ` k ) e. RR ) |
| 133 |
125 126 127 128 7 130 106 107 131 132
|
etransclem37 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) |
| 134 |
109
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ! ` ( P - 1 ) ) e. ZZ ) |
| 135 |
|
dvdsval2 |
|- ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ! ` ( P - 1 ) ) =/= 0 /\ ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. ZZ ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) <-> ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) |
| 136 |
134 122 119 135
|
syl3anc |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) <-> ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) |
| 137 |
133 136
|
mpbid |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
| 138 |
124 137
|
zmulcld |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) e. ZZ ) |
| 139 |
123 138
|
eqeltrd |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
| 140 |
92 139
|
fsumzcl |
|- ( ph -> sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
| 141 |
116 140
|
eqeltrd |
|- ( ph -> ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
| 142 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 143 |
|
zabscl |
|- ( ( A ` 0 ) e. ZZ -> ( abs ` ( A ` 0 ) ) e. ZZ ) |
| 144 |
82 143
|
syl |
|- ( ph -> ( abs ` ( A ` 0 ) ) e. ZZ ) |
| 145 |
|
nn0abscl |
|- ( ( A ` 0 ) e. ZZ -> ( abs ` ( A ` 0 ) ) e. NN0 ) |
| 146 |
82 145
|
syl |
|- ( ph -> ( abs ` ( A ` 0 ) ) e. NN0 ) |
| 147 |
103 2
|
absne0d |
|- ( ph -> ( abs ` ( A ` 0 ) ) =/= 0 ) |
| 148 |
|
elnnne0 |
|- ( ( abs ` ( A ` 0 ) ) e. NN <-> ( ( abs ` ( A ` 0 ) ) e. NN0 /\ ( abs ` ( A ` 0 ) ) =/= 0 ) ) |
| 149 |
146 147 148
|
sylanbrc |
|- ( ph -> ( abs ` ( A ` 0 ) ) e. NN ) |
| 150 |
149
|
nnge1d |
|- ( ph -> 1 <_ ( abs ` ( A ` 0 ) ) ) |
| 151 |
|
zltlem1 |
|- ( ( ( abs ` ( A ` 0 ) ) e. ZZ /\ P e. ZZ ) -> ( ( abs ` ( A ` 0 ) ) < P <-> ( abs ` ( A ` 0 ) ) <_ ( P - 1 ) ) ) |
| 152 |
144 48 151
|
syl2anc |
|- ( ph -> ( ( abs ` ( A ` 0 ) ) < P <-> ( abs ` ( A ` 0 ) ) <_ ( P - 1 ) ) ) |
| 153 |
5 152
|
mpbid |
|- ( ph -> ( abs ` ( A ` 0 ) ) <_ ( P - 1 ) ) |
| 154 |
142 52 144 150 153
|
elfzd |
|- ( ph -> ( abs ` ( A ` 0 ) ) e. ( 1 ... ( P - 1 ) ) ) |
| 155 |
|
fzm1ndvds |
|- ( ( P e. NN /\ ( abs ` ( A ` 0 ) ) e. ( 1 ... ( P - 1 ) ) ) -> -. P || ( abs ` ( A ` 0 ) ) ) |
| 156 |
30 154 155
|
syl2anc |
|- ( ph -> -. P || ( abs ` ( A ` 0 ) ) ) |
| 157 |
|
dvdsabsb |
|- ( ( P e. ZZ /\ ( A ` 0 ) e. ZZ ) -> ( P || ( A ` 0 ) <-> P || ( abs ` ( A ` 0 ) ) ) ) |
| 158 |
48 82 157
|
syl2anc |
|- ( ph -> ( P || ( A ` 0 ) <-> P || ( abs ` ( A ` 0 ) ) ) ) |
| 159 |
156 158
|
mtbird |
|- ( ph -> -. P || ( A ` 0 ) ) |
| 160 |
3 4 6 7
|
etransclem41 |
|- ( ph -> -. P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) |
| 161 |
159 160
|
jca |
|- ( ph -> ( -. P || ( A ` 0 ) /\ -. P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) |
| 162 |
|
pm4.56 |
|- ( ( -. P || ( A ` 0 ) /\ -. P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) <-> -. ( P || ( A ` 0 ) \/ P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) |
| 163 |
161 162
|
sylib |
|- ( ph -> -. ( P || ( A ` 0 ) \/ P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) |
| 164 |
|
euclemma |
|- ( ( P e. Prime /\ ( A ` 0 ) e. ZZ /\ ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) -> ( P || ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) <-> ( P || ( A ` 0 ) \/ P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) ) |
| 165 |
4 82 112 164
|
syl3anc |
|- ( ph -> ( P || ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) <-> ( P || ( A ` 0 ) \/ P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) ) |
| 166 |
163 165
|
mtbird |
|- ( ph -> -. P || ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) |
| 167 |
105
|
breq2d |
|- ( ph -> ( P || ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) <-> P || ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) ) |
| 168 |
166 167
|
mtbird |
|- ( ph -> -. P || ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 169 |
48
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> P e. ZZ ) |
| 170 |
169 124 137
|
3jca |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( P e. ZZ /\ ( A ` ( 1st ` k ) ) e. ZZ /\ ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) |
| 171 |
|
eldifn |
|- ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) -> -. k e. { <. 0 , ( P - 1 ) >. } ) |
| 172 |
93
|
adantr |
|- ( ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) /\ ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) -> k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) |
| 173 |
|
1st2nd2 |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> k = <. ( 1st ` k ) , ( 2nd ` k ) >. ) |
| 174 |
172 173
|
syl |
|- ( ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) /\ ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) -> k = <. ( 1st ` k ) , ( 2nd ` k ) >. ) |
| 175 |
|
simpr |
|- ( ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) -> ( 1st ` k ) = 0 ) |
| 176 |
|
simpl |
|- ( ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) -> ( 2nd ` k ) = ( P - 1 ) ) |
| 177 |
175 176
|
opeq12d |
|- ( ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) -> <. ( 1st ` k ) , ( 2nd ` k ) >. = <. 0 , ( P - 1 ) >. ) |
| 178 |
177
|
adantl |
|- ( ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) /\ ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) -> <. ( 1st ` k ) , ( 2nd ` k ) >. = <. 0 , ( P - 1 ) >. ) |
| 179 |
174 178
|
eqtrd |
|- ( ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) /\ ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) -> k = <. 0 , ( P - 1 ) >. ) |
| 180 |
|
velsn |
|- ( k e. { <. 0 , ( P - 1 ) >. } <-> k = <. 0 , ( P - 1 ) >. ) |
| 181 |
179 180
|
sylibr |
|- ( ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) /\ ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) -> k e. { <. 0 , ( P - 1 ) >. } ) |
| 182 |
171 181
|
mtand |
|- ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) -> -. ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) |
| 183 |
182
|
adantl |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> -. ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) |
| 184 |
127 128 7 130 131 183 107
|
etransclem38 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> P || ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 185 |
|
dvdsmultr2 |
|- ( ( P e. ZZ /\ ( A ` ( 1st ` k ) ) e. ZZ /\ ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) -> ( P || ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) -> P || ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) ) ) |
| 186 |
170 184 185
|
sylc |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> P || ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
| 187 |
186 123
|
breqtrrd |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> P || ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 188 |
92 48 139 187
|
fsumdvds |
|- ( ph -> P || sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 189 |
188 116
|
breqtrrd |
|- ( ph -> P || ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 190 |
48 102 114 141 168 189
|
etransclem9 |
|- ( ph -> ( ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) + ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) =/= 0 ) |
| 191 |
101 190
|
eqnetrd |
|- ( ph -> K =/= 0 ) |