Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem44.a |
|- ( ph -> A : NN0 --> ZZ ) |
2 |
|
etransclem44.a0 |
|- ( ph -> ( A ` 0 ) =/= 0 ) |
3 |
|
etransclem44.m |
|- ( ph -> M e. NN0 ) |
4 |
|
etransclem44.p |
|- ( ph -> P e. Prime ) |
5 |
|
etransclem44.ap |
|- ( ph -> ( abs ` ( A ` 0 ) ) < P ) |
6 |
|
etransclem44.mp |
|- ( ph -> ( ! ` M ) < P ) |
7 |
|
etransclem44.f |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
8 |
|
etransclem44.k |
|- K = ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) |
9 |
8
|
a1i |
|- ( ph -> K = ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
10 |
|
nfv |
|- F/ k ph |
11 |
|
nfcv |
|- F/_ k ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) |
12 |
|
fzfi |
|- ( 0 ... M ) e. Fin |
13 |
|
fzfi |
|- ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) e. Fin |
14 |
|
xpfi |
|- ( ( ( 0 ... M ) e. Fin /\ ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) e. Fin ) -> ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin ) |
15 |
12 13 14
|
mp2an |
|- ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin |
16 |
15
|
a1i |
|- ( ph -> ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin ) |
17 |
1
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> A : NN0 --> ZZ ) |
18 |
|
fzssnn0 |
|- ( 0 ... M ) C_ NN0 |
19 |
|
xp1st |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 1st ` k ) e. ( 0 ... M ) ) |
20 |
18 19
|
sseldi |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 1st ` k ) e. NN0 ) |
21 |
20
|
adantl |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 1st ` k ) e. NN0 ) |
22 |
17 21
|
ffvelrnd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( A ` ( 1st ` k ) ) e. ZZ ) |
23 |
|
reelprrecn |
|- RR e. { RR , CC } |
24 |
23
|
a1i |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> RR e. { RR , CC } ) |
25 |
|
reopn |
|- RR e. ( topGen ` ran (,) ) |
26 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
27 |
26
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
28 |
25 27
|
eleqtri |
|- RR e. ( ( TopOpen ` CCfld ) |`t RR ) |
29 |
28
|
a1i |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
30 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
31 |
4 30
|
syl |
|- ( ph -> P e. NN ) |
32 |
31
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> P e. NN ) |
33 |
3
|
adantr |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> M e. NN0 ) |
34 |
|
xp2nd |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 2nd ` k ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) |
35 |
|
elfznn0 |
|- ( ( 2nd ` k ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) -> ( 2nd ` k ) e. NN0 ) |
36 |
34 35
|
syl |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> ( 2nd ` k ) e. NN0 ) |
37 |
36
|
adantl |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 2nd ` k ) e. NN0 ) |
38 |
21
|
nn0red |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 1st ` k ) e. RR ) |
39 |
21
|
nn0zd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( 1st ` k ) e. ZZ ) |
40 |
24 29 32 33 7 37 38 39
|
etransclem42 |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. ZZ ) |
41 |
22 40
|
zmulcld |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. ZZ ) |
42 |
41
|
zcnd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) |
43 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
44 |
3 43
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
45 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
46 |
44 45
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
47 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
48 |
3
|
nn0zd |
|- ( ph -> M e. ZZ ) |
49 |
31
|
nnzd |
|- ( ph -> P e. ZZ ) |
50 |
48 49
|
zmulcld |
|- ( ph -> ( M x. P ) e. ZZ ) |
51 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
52 |
31 51
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
53 |
52
|
nn0zd |
|- ( ph -> ( P - 1 ) e. ZZ ) |
54 |
50 53
|
zaddcld |
|- ( ph -> ( ( M x. P ) + ( P - 1 ) ) e. ZZ ) |
55 |
52
|
nn0ge0d |
|- ( ph -> 0 <_ ( P - 1 ) ) |
56 |
31
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
57 |
3 56
|
nn0mulcld |
|- ( ph -> ( M x. P ) e. NN0 ) |
58 |
57
|
nn0ge0d |
|- ( ph -> 0 <_ ( M x. P ) ) |
59 |
52
|
nn0red |
|- ( ph -> ( P - 1 ) e. RR ) |
60 |
50
|
zred |
|- ( ph -> ( M x. P ) e. RR ) |
61 |
59 60
|
addge02d |
|- ( ph -> ( 0 <_ ( M x. P ) <-> ( P - 1 ) <_ ( ( M x. P ) + ( P - 1 ) ) ) ) |
62 |
58 61
|
mpbid |
|- ( ph -> ( P - 1 ) <_ ( ( M x. P ) + ( P - 1 ) ) ) |
63 |
47 54 53 55 62
|
elfzd |
|- ( ph -> ( P - 1 ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) |
64 |
|
opelxp |
|- ( <. 0 , ( P - 1 ) >. e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) <-> ( 0 e. ( 0 ... M ) /\ ( P - 1 ) e. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) |
65 |
46 63 64
|
sylanbrc |
|- ( ph -> <. 0 , ( P - 1 ) >. e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) |
66 |
|
fveq2 |
|- ( k = <. 0 , ( P - 1 ) >. -> ( 1st ` k ) = ( 1st ` <. 0 , ( P - 1 ) >. ) ) |
67 |
|
0re |
|- 0 e. RR |
68 |
|
ovex |
|- ( P - 1 ) e. _V |
69 |
|
op1stg |
|- ( ( 0 e. RR /\ ( P - 1 ) e. _V ) -> ( 1st ` <. 0 , ( P - 1 ) >. ) = 0 ) |
70 |
67 68 69
|
mp2an |
|- ( 1st ` <. 0 , ( P - 1 ) >. ) = 0 |
71 |
66 70
|
eqtrdi |
|- ( k = <. 0 , ( P - 1 ) >. -> ( 1st ` k ) = 0 ) |
72 |
71
|
fveq2d |
|- ( k = <. 0 , ( P - 1 ) >. -> ( A ` ( 1st ` k ) ) = ( A ` 0 ) ) |
73 |
|
fveq2 |
|- ( k = <. 0 , ( P - 1 ) >. -> ( 2nd ` k ) = ( 2nd ` <. 0 , ( P - 1 ) >. ) ) |
74 |
|
op2ndg |
|- ( ( 0 e. RR /\ ( P - 1 ) e. _V ) -> ( 2nd ` <. 0 , ( P - 1 ) >. ) = ( P - 1 ) ) |
75 |
67 68 74
|
mp2an |
|- ( 2nd ` <. 0 , ( P - 1 ) >. ) = ( P - 1 ) |
76 |
73 75
|
eqtrdi |
|- ( k = <. 0 , ( P - 1 ) >. -> ( 2nd ` k ) = ( P - 1 ) ) |
77 |
76
|
fveq2d |
|- ( k = <. 0 , ( P - 1 ) >. -> ( ( RR Dn F ) ` ( 2nd ` k ) ) = ( ( RR Dn F ) ` ( P - 1 ) ) ) |
78 |
77 71
|
fveq12d |
|- ( k = <. 0 , ( P - 1 ) >. -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) = ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) |
79 |
72 78
|
oveq12d |
|- ( k = <. 0 , ( P - 1 ) >. -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) = ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) ) |
80 |
10 11 16 42 65 79
|
fsumsplit1 |
|- ( ph -> sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) = ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) + sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) ) |
81 |
80
|
oveq1d |
|- ( ph -> ( sum_ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) + sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
82 |
18 46
|
sseldi |
|- ( ph -> 0 e. NN0 ) |
83 |
1 82
|
ffvelrnd |
|- ( ph -> ( A ` 0 ) e. ZZ ) |
84 |
23
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
85 |
28
|
a1i |
|- ( ph -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
86 |
67
|
a1i |
|- ( ph -> 0 e. RR ) |
87 |
84 85 31 3 7 52 86 47
|
etransclem42 |
|- ( ph -> ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) e. ZZ ) |
88 |
83 87
|
zmulcld |
|- ( ph -> ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) e. ZZ ) |
89 |
88
|
zcnd |
|- ( ph -> ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) e. CC ) |
90 |
|
difss |
|- ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) C_ ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) |
91 |
|
ssfi |
|- ( ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) e. Fin /\ ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) C_ ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) e. Fin ) |
92 |
15 90 91
|
mp2an |
|- ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) e. Fin |
93 |
92
|
a1i |
|- ( ph -> ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) e. Fin ) |
94 |
|
eldifi |
|- ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) -> k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) |
95 |
94 41
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. ZZ ) |
96 |
93 95
|
fsumzcl |
|- ( ph -> sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. ZZ ) |
97 |
96
|
zcnd |
|- ( ph -> sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) |
98 |
52
|
faccld |
|- ( ph -> ( ! ` ( P - 1 ) ) e. NN ) |
99 |
98
|
nncnd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. CC ) |
100 |
98
|
nnne0d |
|- ( ph -> ( ! ` ( P - 1 ) ) =/= 0 ) |
101 |
89 97 99 100
|
divdird |
|- ( ph -> ( ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) + sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) + ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
102 |
9 81 101
|
3eqtrd |
|- ( ph -> K = ( ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) + ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
103 |
31
|
nnne0d |
|- ( ph -> P =/= 0 ) |
104 |
83
|
zcnd |
|- ( ph -> ( A ` 0 ) e. CC ) |
105 |
87
|
zcnd |
|- ( ph -> ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) e. CC ) |
106 |
104 105 99 100
|
divassd |
|- ( ph -> ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) = ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) |
107 |
|
etransclem5 |
|- ( k e. ( 0 ... M ) |-> ( y e. RR |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. RR |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
108 |
|
etransclem11 |
|- ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) |
109 |
84 85 31 3 7 52 107 108 46 86
|
etransclem37 |
|- ( ph -> ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) |
110 |
98
|
nnzd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. ZZ ) |
111 |
|
dvdsval2 |
|- ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ! ` ( P - 1 ) ) =/= 0 /\ ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) e. ZZ ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) <-> ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) |
112 |
110 100 87 111
|
syl3anc |
|- ( ph -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) <-> ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) |
113 |
109 112
|
mpbid |
|- ( ph -> ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
114 |
83 113
|
zmulcld |
|- ( ph -> ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) e. ZZ ) |
115 |
106 114
|
eqeltrd |
|- ( ph -> ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
116 |
94 42
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) e. CC ) |
117 |
93 99 116 100
|
fsumdivc |
|- ( ph -> ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
118 |
22
|
zcnd |
|- ( ( ph /\ k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) -> ( A ` ( 1st ` k ) ) e. CC ) |
119 |
94 118
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( A ` ( 1st ` k ) ) e. CC ) |
120 |
94 40
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. ZZ ) |
121 |
120
|
zcnd |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. CC ) |
122 |
99
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ! ` ( P - 1 ) ) e. CC ) |
123 |
100
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ! ` ( P - 1 ) ) =/= 0 ) |
124 |
119 121 122 123
|
divassd |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
125 |
94 22
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( A ` ( 1st ` k ) ) e. ZZ ) |
126 |
23
|
a1i |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> RR e. { RR , CC } ) |
127 |
28
|
a1i |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
128 |
31
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> P e. NN ) |
129 |
3
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> M e. NN0 ) |
130 |
94
|
adantl |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) |
131 |
130 36
|
syl |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( 2nd ` k ) e. NN0 ) |
132 |
130 19
|
syl |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( 1st ` k ) e. ( 0 ... M ) ) |
133 |
94 38
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( 1st ` k ) e. RR ) |
134 |
126 127 128 129 7 131 107 108 132 133
|
etransclem37 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) |
135 |
110
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ! ` ( P - 1 ) ) e. ZZ ) |
136 |
|
dvdsval2 |
|- ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ! ` ( P - 1 ) ) =/= 0 /\ ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) e. ZZ ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) <-> ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) |
137 |
135 123 120 136
|
syl3anc |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) <-> ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) |
138 |
134 137
|
mpbid |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
139 |
125 138
|
zmulcld |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) e. ZZ ) |
140 |
124 139
|
eqeltrd |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
141 |
93 140
|
fsumzcl |
|- ( ph -> sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
142 |
117 141
|
eqeltrd |
|- ( ph -> ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
143 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
144 |
|
zabscl |
|- ( ( A ` 0 ) e. ZZ -> ( abs ` ( A ` 0 ) ) e. ZZ ) |
145 |
83 144
|
syl |
|- ( ph -> ( abs ` ( A ` 0 ) ) e. ZZ ) |
146 |
|
nn0abscl |
|- ( ( A ` 0 ) e. ZZ -> ( abs ` ( A ` 0 ) ) e. NN0 ) |
147 |
83 146
|
syl |
|- ( ph -> ( abs ` ( A ` 0 ) ) e. NN0 ) |
148 |
104 2
|
absne0d |
|- ( ph -> ( abs ` ( A ` 0 ) ) =/= 0 ) |
149 |
|
elnnne0 |
|- ( ( abs ` ( A ` 0 ) ) e. NN <-> ( ( abs ` ( A ` 0 ) ) e. NN0 /\ ( abs ` ( A ` 0 ) ) =/= 0 ) ) |
150 |
147 148 149
|
sylanbrc |
|- ( ph -> ( abs ` ( A ` 0 ) ) e. NN ) |
151 |
150
|
nnge1d |
|- ( ph -> 1 <_ ( abs ` ( A ` 0 ) ) ) |
152 |
|
zltlem1 |
|- ( ( ( abs ` ( A ` 0 ) ) e. ZZ /\ P e. ZZ ) -> ( ( abs ` ( A ` 0 ) ) < P <-> ( abs ` ( A ` 0 ) ) <_ ( P - 1 ) ) ) |
153 |
145 49 152
|
syl2anc |
|- ( ph -> ( ( abs ` ( A ` 0 ) ) < P <-> ( abs ` ( A ` 0 ) ) <_ ( P - 1 ) ) ) |
154 |
5 153
|
mpbid |
|- ( ph -> ( abs ` ( A ` 0 ) ) <_ ( P - 1 ) ) |
155 |
143 53 145 151 154
|
elfzd |
|- ( ph -> ( abs ` ( A ` 0 ) ) e. ( 1 ... ( P - 1 ) ) ) |
156 |
|
fzm1ndvds |
|- ( ( P e. NN /\ ( abs ` ( A ` 0 ) ) e. ( 1 ... ( P - 1 ) ) ) -> -. P || ( abs ` ( A ` 0 ) ) ) |
157 |
31 155 156
|
syl2anc |
|- ( ph -> -. P || ( abs ` ( A ` 0 ) ) ) |
158 |
|
dvdsabsb |
|- ( ( P e. ZZ /\ ( A ` 0 ) e. ZZ ) -> ( P || ( A ` 0 ) <-> P || ( abs ` ( A ` 0 ) ) ) ) |
159 |
49 83 158
|
syl2anc |
|- ( ph -> ( P || ( A ` 0 ) <-> P || ( abs ` ( A ` 0 ) ) ) ) |
160 |
157 159
|
mtbird |
|- ( ph -> -. P || ( A ` 0 ) ) |
161 |
3 4 6 7
|
etransclem41 |
|- ( ph -> -. P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) |
162 |
160 161
|
jca |
|- ( ph -> ( -. P || ( A ` 0 ) /\ -. P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) |
163 |
|
pm4.56 |
|- ( ( -. P || ( A ` 0 ) /\ -. P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) <-> -. ( P || ( A ` 0 ) \/ P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) |
164 |
162 163
|
sylib |
|- ( ph -> -. ( P || ( A ` 0 ) \/ P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) |
165 |
|
euclemma |
|- ( ( P e. Prime /\ ( A ` 0 ) e. ZZ /\ ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) -> ( P || ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) <-> ( P || ( A ` 0 ) \/ P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) ) |
166 |
4 83 113 165
|
syl3anc |
|- ( ph -> ( P || ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) <-> ( P || ( A ` 0 ) \/ P || ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) ) |
167 |
164 166
|
mtbird |
|- ( ph -> -. P || ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) |
168 |
106
|
breq2d |
|- ( ph -> ( P || ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) <-> P || ( ( A ` 0 ) x. ( ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) / ( ! ` ( P - 1 ) ) ) ) ) ) |
169 |
167 168
|
mtbird |
|- ( ph -> -. P || ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) ) |
170 |
49
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> P e. ZZ ) |
171 |
170 125 138
|
3jca |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> ( P e. ZZ /\ ( A ` ( 1st ` k ) ) e. ZZ /\ ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) |
172 |
|
eldifn |
|- ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) -> -. k e. { <. 0 , ( P - 1 ) >. } ) |
173 |
94
|
adantr |
|- ( ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) /\ ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) -> k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) ) |
174 |
|
1st2nd2 |
|- ( k e. ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) -> k = <. ( 1st ` k ) , ( 2nd ` k ) >. ) |
175 |
173 174
|
syl |
|- ( ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) /\ ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) -> k = <. ( 1st ` k ) , ( 2nd ` k ) >. ) |
176 |
|
simpr |
|- ( ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) -> ( 1st ` k ) = 0 ) |
177 |
|
simpl |
|- ( ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) -> ( 2nd ` k ) = ( P - 1 ) ) |
178 |
176 177
|
opeq12d |
|- ( ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) -> <. ( 1st ` k ) , ( 2nd ` k ) >. = <. 0 , ( P - 1 ) >. ) |
179 |
178
|
adantl |
|- ( ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) /\ ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) -> <. ( 1st ` k ) , ( 2nd ` k ) >. = <. 0 , ( P - 1 ) >. ) |
180 |
175 179
|
eqtrd |
|- ( ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) /\ ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) -> k = <. 0 , ( P - 1 ) >. ) |
181 |
|
velsn |
|- ( k e. { <. 0 , ( P - 1 ) >. } <-> k = <. 0 , ( P - 1 ) >. ) |
182 |
180 181
|
sylibr |
|- ( ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) /\ ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) -> k e. { <. 0 , ( P - 1 ) >. } ) |
183 |
172 182
|
mtand |
|- ( k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) -> -. ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) |
184 |
183
|
adantl |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> -. ( ( 2nd ` k ) = ( P - 1 ) /\ ( 1st ` k ) = 0 ) ) |
185 |
128 129 7 131 132 184 108
|
etransclem38 |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> P || ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) |
186 |
|
dvdsmultr2 |
|- ( ( P e. ZZ /\ ( A ` ( 1st ` k ) ) e. ZZ /\ ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) -> ( P || ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) -> P || ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) ) ) |
187 |
171 185 186
|
sylc |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> P || ( ( A ` ( 1st ` k ) ) x. ( ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
188 |
187 124
|
breqtrrd |
|- ( ( ph /\ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ) -> P || ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
189 |
93 49 140 188
|
fsumdvds |
|- ( ph -> P || sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
190 |
189 117
|
breqtrrd |
|- ( ph -> P || ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
191 |
49 103 115 142 169 190
|
etransclem9 |
|- ( ph -> ( ( ( ( A ` 0 ) x. ( ( ( RR Dn F ) ` ( P - 1 ) ) ` 0 ) ) / ( ! ` ( P - 1 ) ) ) + ( sum_ k e. ( ( ( 0 ... M ) X. ( 0 ... ( ( M x. P ) + ( P - 1 ) ) ) ) \ { <. 0 , ( P - 1 ) >. } ) ( ( A ` ( 1st ` k ) ) x. ( ( ( RR Dn F ) ` ( 2nd ` k ) ) ` ( 1st ` k ) ) ) / ( ! ` ( P - 1 ) ) ) ) =/= 0 ) |
192 |
102 191
|
eqnetrd |
|- ( ph -> K =/= 0 ) |