| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem44.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℤ ) |
| 2 |
|
etransclem44.a0 |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) ≠ 0 ) |
| 3 |
|
etransclem44.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 4 |
|
etransclem44.p |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 5 |
|
etransclem44.ap |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 ‘ 0 ) ) < 𝑃 ) |
| 6 |
|
etransclem44.mp |
⊢ ( 𝜑 → ( ! ‘ 𝑀 ) < 𝑃 ) |
| 7 |
|
etransclem44.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
| 8 |
|
etransclem44.k |
⊢ 𝐾 = ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 𝐾 = ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
| 10 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ( 𝐴 ‘ 0 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) |
| 12 |
|
fzfi |
⊢ ( 0 ... 𝑀 ) ∈ Fin |
| 13 |
|
fzfi |
⊢ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ∈ Fin |
| 14 |
|
xpfi |
⊢ ( ( ( 0 ... 𝑀 ) ∈ Fin ∧ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ∈ Fin ) → ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∈ Fin ) |
| 15 |
12 13 14
|
mp2an |
⊢ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∈ Fin |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∈ Fin ) |
| 17 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → 𝐴 : ℕ0 ⟶ ℤ ) |
| 18 |
|
fzssnn0 |
⊢ ( 0 ... 𝑀 ) ⊆ ℕ0 |
| 19 |
|
xp1st |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) → ( 1st ‘ 𝑘 ) ∈ ( 0 ... 𝑀 ) ) |
| 20 |
18 19
|
sselid |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) → ( 1st ‘ 𝑘 ) ∈ ℕ0 ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 1st ‘ 𝑘 ) ∈ ℕ0 ) |
| 22 |
17 21
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) ∈ ℤ ) |
| 23 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ℝ ∈ { ℝ , ℂ } ) |
| 25 |
|
reopn |
⊢ ℝ ∈ ( topGen ‘ ran (,) ) |
| 26 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 27 |
25 26
|
eleqtri |
⊢ ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 29 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 30 |
4 29
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → 𝑃 ∈ ℕ ) |
| 32 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → 𝑀 ∈ ℕ0 ) |
| 33 |
|
xp2nd |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) → ( 2nd ‘ 𝑘 ) ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) |
| 34 |
|
elfznn0 |
⊢ ( ( 2nd ‘ 𝑘 ) ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) → ( 2nd ‘ 𝑘 ) ∈ ℕ0 ) |
| 35 |
33 34
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) → ( 2nd ‘ 𝑘 ) ∈ ℕ0 ) |
| 36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 2nd ‘ 𝑘 ) ∈ ℕ0 ) |
| 37 |
21
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 1st ‘ 𝑘 ) ∈ ℝ ) |
| 38 |
21
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 1st ‘ 𝑘 ) ∈ ℤ ) |
| 39 |
24 28 31 32 7 36 37 38
|
etransclem42 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ∈ ℤ ) |
| 40 |
22 39
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ∈ ℤ ) |
| 41 |
40
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 42 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 43 |
3 42
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 44 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
| 45 |
43 44
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
| 46 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 47 |
3
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 48 |
30
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 49 |
47 48
|
zmulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) ∈ ℤ ) |
| 50 |
|
nnm1nn0 |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 ) |
| 51 |
30 50
|
syl |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 ) |
| 52 |
51
|
nn0zd |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℤ ) |
| 53 |
49 52
|
zaddcld |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ∈ ℤ ) |
| 54 |
51
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝑃 − 1 ) ) |
| 55 |
30
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
| 56 |
3 55
|
nn0mulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) ∈ ℕ0 ) |
| 57 |
56
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝑀 · 𝑃 ) ) |
| 58 |
51
|
nn0red |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℝ ) |
| 59 |
49
|
zred |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) ∈ ℝ ) |
| 60 |
58 59
|
addge02d |
⊢ ( 𝜑 → ( 0 ≤ ( 𝑀 · 𝑃 ) ↔ ( 𝑃 − 1 ) ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) |
| 61 |
57 60
|
mpbid |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ≤ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) |
| 62 |
46 53 52 54 61
|
elfzd |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) |
| 63 |
|
opelxp |
⊢ ( 〈 0 , ( 𝑃 − 1 ) 〉 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ↔ ( 0 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑃 − 1 ) ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) |
| 64 |
45 62 63
|
sylanbrc |
⊢ ( 𝜑 → 〈 0 , ( 𝑃 − 1 ) 〉 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) |
| 65 |
|
fveq2 |
⊢ ( 𝑘 = 〈 0 , ( 𝑃 − 1 ) 〉 → ( 1st ‘ 𝑘 ) = ( 1st ‘ 〈 0 , ( 𝑃 − 1 ) 〉 ) ) |
| 66 |
|
0re |
⊢ 0 ∈ ℝ |
| 67 |
|
ovex |
⊢ ( 𝑃 − 1 ) ∈ V |
| 68 |
|
op1stg |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑃 − 1 ) ∈ V ) → ( 1st ‘ 〈 0 , ( 𝑃 − 1 ) 〉 ) = 0 ) |
| 69 |
66 67 68
|
mp2an |
⊢ ( 1st ‘ 〈 0 , ( 𝑃 − 1 ) 〉 ) = 0 |
| 70 |
65 69
|
eqtrdi |
⊢ ( 𝑘 = 〈 0 , ( 𝑃 − 1 ) 〉 → ( 1st ‘ 𝑘 ) = 0 ) |
| 71 |
70
|
fveq2d |
⊢ ( 𝑘 = 〈 0 , ( 𝑃 − 1 ) 〉 → ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) = ( 𝐴 ‘ 0 ) ) |
| 72 |
|
fveq2 |
⊢ ( 𝑘 = 〈 0 , ( 𝑃 − 1 ) 〉 → ( 2nd ‘ 𝑘 ) = ( 2nd ‘ 〈 0 , ( 𝑃 − 1 ) 〉 ) ) |
| 73 |
|
op2ndg |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑃 − 1 ) ∈ V ) → ( 2nd ‘ 〈 0 , ( 𝑃 − 1 ) 〉 ) = ( 𝑃 − 1 ) ) |
| 74 |
66 67 73
|
mp2an |
⊢ ( 2nd ‘ 〈 0 , ( 𝑃 − 1 ) 〉 ) = ( 𝑃 − 1 ) |
| 75 |
72 74
|
eqtrdi |
⊢ ( 𝑘 = 〈 0 , ( 𝑃 − 1 ) 〉 → ( 2nd ‘ 𝑘 ) = ( 𝑃 − 1 ) ) |
| 76 |
75
|
fveq2d |
⊢ ( 𝑘 = 〈 0 , ( 𝑃 − 1 ) 〉 → ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) = ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ) |
| 77 |
76 70
|
fveq12d |
⊢ ( 𝑘 = 〈 0 , ( 𝑃 − 1 ) 〉 → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) = ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) |
| 78 |
71 77
|
oveq12d |
⊢ ( 𝑘 = 〈 0 , ( 𝑃 − 1 ) 〉 → ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) = ( ( 𝐴 ‘ 0 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) ) |
| 79 |
10 11 16 41 64 78
|
fsumsplit1 |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) = ( ( ( 𝐴 ‘ 0 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) + Σ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ) ) |
| 80 |
79
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( ( ( ( 𝐴 ‘ 0 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) + Σ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
| 81 |
18 45
|
sselid |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 82 |
1 81
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) ∈ ℤ ) |
| 83 |
23
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 84 |
27
|
a1i |
⊢ ( 𝜑 → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 85 |
66
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 86 |
83 84 30 3 7 51 85 46
|
etransclem42 |
⊢ ( 𝜑 → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ∈ ℤ ) |
| 87 |
82 86
|
zmulcld |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 0 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) ∈ ℤ ) |
| 88 |
87
|
zcnd |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 0 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) ∈ ℂ ) |
| 89 |
|
difss |
⊢ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ⊆ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) |
| 90 |
|
ssfi |
⊢ ( ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∈ Fin ∧ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ⊆ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ∈ Fin ) |
| 91 |
15 89 90
|
mp2an |
⊢ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ∈ Fin |
| 92 |
91
|
a1i |
⊢ ( 𝜑 → ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ∈ Fin ) |
| 93 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) → 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) |
| 94 |
93 40
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ∈ ℤ ) |
| 95 |
92 94
|
fsumzcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ∈ ℤ ) |
| 96 |
95
|
zcnd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 97 |
51
|
faccld |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℕ ) |
| 98 |
97
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℂ ) |
| 99 |
97
|
nnne0d |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ≠ 0 ) |
| 100 |
88 96 98 99
|
divdird |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 0 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) + Σ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( ( ( ( 𝐴 ‘ 0 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) + ( Σ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) |
| 101 |
9 80 100
|
3eqtrd |
⊢ ( 𝜑 → 𝐾 = ( ( ( ( 𝐴 ‘ 0 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) + ( Σ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) |
| 102 |
30
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
| 103 |
82
|
zcnd |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) ∈ ℂ ) |
| 104 |
86
|
zcnd |
⊢ ( 𝜑 → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ∈ ℂ ) |
| 105 |
103 104 98 99
|
divassd |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 0 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( ( 𝐴 ‘ 0 ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) |
| 106 |
|
etransclem5 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
| 107 |
|
etransclem11 |
⊢ ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } ) |
| 108 |
83 84 30 3 7 51 106 107 45 85
|
etransclem37 |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∥ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) |
| 109 |
97
|
nnzd |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℤ ) |
| 110 |
|
dvdsval2 |
⊢ ( ( ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℤ ∧ ( ! ‘ ( 𝑃 − 1 ) ) ≠ 0 ∧ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ∈ ℤ ) → ( ( ! ‘ ( 𝑃 − 1 ) ) ∥ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ↔ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) ) |
| 111 |
109 99 86 110
|
syl3anc |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑃 − 1 ) ) ∥ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ↔ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) ) |
| 112 |
108 111
|
mpbid |
⊢ ( 𝜑 → ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) |
| 113 |
82 112
|
zmulcld |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 0 ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ∈ ℤ ) |
| 114 |
105 113
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 0 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) |
| 115 |
93 41
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ∈ ℂ ) |
| 116 |
92 98 115 99
|
fsumdivc |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = Σ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ( ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
| 117 |
22
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) ∈ ℂ ) |
| 118 |
93 117
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) ∈ ℂ ) |
| 119 |
93 39
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ∈ ℤ ) |
| 120 |
119
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ∈ ℂ ) |
| 121 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℂ ) |
| 122 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( ! ‘ ( 𝑃 − 1 ) ) ≠ 0 ) |
| 123 |
118 120 121 122
|
divassd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) |
| 124 |
93 22
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) ∈ ℤ ) |
| 125 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ℝ ∈ { ℝ , ℂ } ) |
| 126 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 127 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → 𝑃 ∈ ℕ ) |
| 128 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → 𝑀 ∈ ℕ0 ) |
| 129 |
93
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) |
| 130 |
129 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( 2nd ‘ 𝑘 ) ∈ ℕ0 ) |
| 131 |
129 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( 1st ‘ 𝑘 ) ∈ ( 0 ... 𝑀 ) ) |
| 132 |
93 37
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( 1st ‘ 𝑘 ) ∈ ℝ ) |
| 133 |
125 126 127 128 7 130 106 107 131 132
|
etransclem37 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( ! ‘ ( 𝑃 − 1 ) ) ∥ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) |
| 134 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℤ ) |
| 135 |
|
dvdsval2 |
⊢ ( ( ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℤ ∧ ( ! ‘ ( 𝑃 − 1 ) ) ≠ 0 ∧ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ∈ ℤ ) → ( ( ! ‘ ( 𝑃 − 1 ) ) ∥ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ↔ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) ) |
| 136 |
134 122 119 135
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( ( ! ‘ ( 𝑃 − 1 ) ) ∥ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ↔ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) ) |
| 137 |
133 136
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) |
| 138 |
124 137
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ∈ ℤ ) |
| 139 |
123 138
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) |
| 140 |
92 139
|
fsumzcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ( ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) |
| 141 |
116 140
|
eqeltrd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) |
| 142 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 143 |
|
zabscl |
⊢ ( ( 𝐴 ‘ 0 ) ∈ ℤ → ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ ℤ ) |
| 144 |
82 143
|
syl |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ ℤ ) |
| 145 |
|
nn0abscl |
⊢ ( ( 𝐴 ‘ 0 ) ∈ ℤ → ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ ℕ0 ) |
| 146 |
82 145
|
syl |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ ℕ0 ) |
| 147 |
103 2
|
absne0d |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 ‘ 0 ) ) ≠ 0 ) |
| 148 |
|
elnnne0 |
⊢ ( ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ ℕ ↔ ( ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ ℕ0 ∧ ( abs ‘ ( 𝐴 ‘ 0 ) ) ≠ 0 ) ) |
| 149 |
146 147 148
|
sylanbrc |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ ℕ ) |
| 150 |
149
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ ( abs ‘ ( 𝐴 ‘ 0 ) ) ) |
| 151 |
|
zltlem1 |
⊢ ( ( ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( abs ‘ ( 𝐴 ‘ 0 ) ) < 𝑃 ↔ ( abs ‘ ( 𝐴 ‘ 0 ) ) ≤ ( 𝑃 − 1 ) ) ) |
| 152 |
144 48 151
|
syl2anc |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 ‘ 0 ) ) < 𝑃 ↔ ( abs ‘ ( 𝐴 ‘ 0 ) ) ≤ ( 𝑃 − 1 ) ) ) |
| 153 |
5 152
|
mpbid |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 ‘ 0 ) ) ≤ ( 𝑃 − 1 ) ) |
| 154 |
142 52 144 150 153
|
elfzd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ ( 1 ... ( 𝑃 − 1 ) ) ) |
| 155 |
|
fzm1ndvds |
⊢ ( ( 𝑃 ∈ ℕ ∧ ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ ( 1 ... ( 𝑃 − 1 ) ) ) → ¬ 𝑃 ∥ ( abs ‘ ( 𝐴 ‘ 0 ) ) ) |
| 156 |
30 154 155
|
syl2anc |
⊢ ( 𝜑 → ¬ 𝑃 ∥ ( abs ‘ ( 𝐴 ‘ 0 ) ) ) |
| 157 |
|
dvdsabsb |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( 𝐴 ‘ 0 ) ∈ ℤ ) → ( 𝑃 ∥ ( 𝐴 ‘ 0 ) ↔ 𝑃 ∥ ( abs ‘ ( 𝐴 ‘ 0 ) ) ) ) |
| 158 |
48 82 157
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∥ ( 𝐴 ‘ 0 ) ↔ 𝑃 ∥ ( abs ‘ ( 𝐴 ‘ 0 ) ) ) ) |
| 159 |
156 158
|
mtbird |
⊢ ( 𝜑 → ¬ 𝑃 ∥ ( 𝐴 ‘ 0 ) ) |
| 160 |
3 4 6 7
|
etransclem41 |
⊢ ( 𝜑 → ¬ 𝑃 ∥ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
| 161 |
159 160
|
jca |
⊢ ( 𝜑 → ( ¬ 𝑃 ∥ ( 𝐴 ‘ 0 ) ∧ ¬ 𝑃 ∥ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) |
| 162 |
|
pm4.56 |
⊢ ( ( ¬ 𝑃 ∥ ( 𝐴 ‘ 0 ) ∧ ¬ 𝑃 ∥ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ↔ ¬ ( 𝑃 ∥ ( 𝐴 ‘ 0 ) ∨ 𝑃 ∥ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) |
| 163 |
161 162
|
sylib |
⊢ ( 𝜑 → ¬ ( 𝑃 ∥ ( 𝐴 ‘ 0 ) ∨ 𝑃 ∥ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) |
| 164 |
|
euclemma |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ‘ 0 ) ∈ ℤ ∧ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) → ( 𝑃 ∥ ( ( 𝐴 ‘ 0 ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ↔ ( 𝑃 ∥ ( 𝐴 ‘ 0 ) ∨ 𝑃 ∥ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) ) |
| 165 |
4 82 112 164
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐴 ‘ 0 ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ↔ ( 𝑃 ∥ ( 𝐴 ‘ 0 ) ∨ 𝑃 ∥ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) ) |
| 166 |
163 165
|
mtbird |
⊢ ( 𝜑 → ¬ 𝑃 ∥ ( ( 𝐴 ‘ 0 ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) |
| 167 |
105
|
breq2d |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ( ( 𝐴 ‘ 0 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ↔ 𝑃 ∥ ( ( 𝐴 ‘ 0 ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) ) |
| 168 |
166 167
|
mtbird |
⊢ ( 𝜑 → ¬ 𝑃 ∥ ( ( ( 𝐴 ‘ 0 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
| 169 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → 𝑃 ∈ ℤ ) |
| 170 |
169 124 137
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ( 𝑃 ∈ ℤ ∧ ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) ∈ ℤ ∧ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) ) |
| 171 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) → ¬ 𝑘 ∈ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) |
| 172 |
93
|
adantr |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ∧ ( ( 2nd ‘ 𝑘 ) = ( 𝑃 − 1 ) ∧ ( 1st ‘ 𝑘 ) = 0 ) ) → 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) |
| 173 |
|
1st2nd2 |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) → 𝑘 = 〈 ( 1st ‘ 𝑘 ) , ( 2nd ‘ 𝑘 ) 〉 ) |
| 174 |
172 173
|
syl |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ∧ ( ( 2nd ‘ 𝑘 ) = ( 𝑃 − 1 ) ∧ ( 1st ‘ 𝑘 ) = 0 ) ) → 𝑘 = 〈 ( 1st ‘ 𝑘 ) , ( 2nd ‘ 𝑘 ) 〉 ) |
| 175 |
|
simpr |
⊢ ( ( ( 2nd ‘ 𝑘 ) = ( 𝑃 − 1 ) ∧ ( 1st ‘ 𝑘 ) = 0 ) → ( 1st ‘ 𝑘 ) = 0 ) |
| 176 |
|
simpl |
⊢ ( ( ( 2nd ‘ 𝑘 ) = ( 𝑃 − 1 ) ∧ ( 1st ‘ 𝑘 ) = 0 ) → ( 2nd ‘ 𝑘 ) = ( 𝑃 − 1 ) ) |
| 177 |
175 176
|
opeq12d |
⊢ ( ( ( 2nd ‘ 𝑘 ) = ( 𝑃 − 1 ) ∧ ( 1st ‘ 𝑘 ) = 0 ) → 〈 ( 1st ‘ 𝑘 ) , ( 2nd ‘ 𝑘 ) 〉 = 〈 0 , ( 𝑃 − 1 ) 〉 ) |
| 178 |
177
|
adantl |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ∧ ( ( 2nd ‘ 𝑘 ) = ( 𝑃 − 1 ) ∧ ( 1st ‘ 𝑘 ) = 0 ) ) → 〈 ( 1st ‘ 𝑘 ) , ( 2nd ‘ 𝑘 ) 〉 = 〈 0 , ( 𝑃 − 1 ) 〉 ) |
| 179 |
174 178
|
eqtrd |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ∧ ( ( 2nd ‘ 𝑘 ) = ( 𝑃 − 1 ) ∧ ( 1st ‘ 𝑘 ) = 0 ) ) → 𝑘 = 〈 0 , ( 𝑃 − 1 ) 〉 ) |
| 180 |
|
velsn |
⊢ ( 𝑘 ∈ { 〈 0 , ( 𝑃 − 1 ) 〉 } ↔ 𝑘 = 〈 0 , ( 𝑃 − 1 ) 〉 ) |
| 181 |
179 180
|
sylibr |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ∧ ( ( 2nd ‘ 𝑘 ) = ( 𝑃 − 1 ) ∧ ( 1st ‘ 𝑘 ) = 0 ) ) → 𝑘 ∈ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) |
| 182 |
171 181
|
mtand |
⊢ ( 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) → ¬ ( ( 2nd ‘ 𝑘 ) = ( 𝑃 − 1 ) ∧ ( 1st ‘ 𝑘 ) = 0 ) ) |
| 183 |
182
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → ¬ ( ( 2nd ‘ 𝑘 ) = ( 𝑃 − 1 ) ∧ ( 1st ‘ 𝑘 ) = 0 ) ) |
| 184 |
127 128 7 130 131 183 107
|
etransclem38 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → 𝑃 ∥ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
| 185 |
|
dvdsmultr2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) ∈ ℤ ∧ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) → ( 𝑃 ∥ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) → 𝑃 ∥ ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) ) |
| 186 |
170 184 185
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → 𝑃 ∥ ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) |
| 187 |
186 123
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ) → 𝑃 ∥ ( ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
| 188 |
92 48 139 187
|
fsumdvds |
⊢ ( 𝜑 → 𝑃 ∥ Σ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ( ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
| 189 |
188 116
|
breqtrrd |
⊢ ( 𝜑 → 𝑃 ∥ ( Σ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
| 190 |
48 102 114 141 168 189
|
etransclem9 |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 0 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑃 − 1 ) ) ‘ 0 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) + ( Σ 𝑘 ∈ ( ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∖ { 〈 0 , ( 𝑃 − 1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ≠ 0 ) |
| 191 |
101 190
|
eqnetrd |
⊢ ( 𝜑 → 𝐾 ≠ 0 ) |