Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem45.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
2 |
|
etransclem45.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
3 |
|
etransclem45.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
4 |
|
etransclem45.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℤ ) |
5 |
|
etransclem45.k |
⊢ 𝐾 = ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) |
6 |
|
fzfi |
⊢ ( 0 ... 𝑀 ) ∈ Fin |
7 |
|
fzfi |
⊢ ( 0 ... 𝑅 ) ∈ Fin |
8 |
|
xpfi |
⊢ ( ( ( 0 ... 𝑀 ) ∈ Fin ∧ ( 0 ... 𝑅 ) ∈ Fin ) → ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ∈ Fin ) |
9 |
6 7 8
|
mp2an |
⊢ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ∈ Fin |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ∈ Fin ) |
11 |
|
nnm1nn0 |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 ) |
13 |
12
|
faccld |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℕ ) |
14 |
13
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℂ ) |
15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → 𝐴 : ℕ0 ⟶ ℤ ) |
16 |
|
xp1st |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) → ( 1st ‘ 𝑘 ) ∈ ( 0 ... 𝑀 ) ) |
17 |
|
elfznn0 |
⊢ ( ( 1st ‘ 𝑘 ) ∈ ( 0 ... 𝑀 ) → ( 1st ‘ 𝑘 ) ∈ ℕ0 ) |
18 |
16 17
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) → ( 1st ‘ 𝑘 ) ∈ ℕ0 ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( 1st ‘ 𝑘 ) ∈ ℕ0 ) |
20 |
15 19
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) ∈ ℤ ) |
21 |
20
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) ∈ ℂ ) |
22 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ℝ ∈ { ℝ , ℂ } ) |
24 |
|
reopn |
⊢ ℝ ∈ ( topGen ‘ ran (,) ) |
25 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
26 |
25
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
27 |
24 26
|
eleqtri |
⊢ ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
29 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → 𝑃 ∈ ℕ ) |
30 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → 𝑀 ∈ ℕ0 ) |
31 |
|
xp2nd |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) → ( 2nd ‘ 𝑘 ) ∈ ( 0 ... 𝑅 ) ) |
32 |
|
elfznn0 |
⊢ ( ( 2nd ‘ 𝑘 ) ∈ ( 0 ... 𝑅 ) → ( 2nd ‘ 𝑘 ) ∈ ℕ0 ) |
33 |
31 32
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) → ( 2nd ‘ 𝑘 ) ∈ ℕ0 ) |
34 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( 2nd ‘ 𝑘 ) ∈ ℕ0 ) |
35 |
23 28 29 30 3 34
|
etransclem33 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) : ℝ ⟶ ℂ ) |
36 |
19
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( 1st ‘ 𝑘 ) ∈ ℝ ) |
37 |
35 36
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ∈ ℂ ) |
38 |
21 37
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ∈ ℂ ) |
39 |
13
|
nnne0d |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ≠ 0 ) |
40 |
10 14 38 39
|
fsumdivc |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
41 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℂ ) |
42 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ! ‘ ( 𝑃 − 1 ) ) ≠ 0 ) |
43 |
21 37 41 42
|
divassd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ) |
44 |
|
etransclem5 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
45 |
|
etransclem11 |
⊢ ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 ) = 𝑚 } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) = 𝑛 } ) |
46 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( 1st ‘ 𝑘 ) ∈ ( 0 ... 𝑀 ) ) |
47 |
23 28 29 30 3 34 44 45 46 36
|
etransclem37 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ! ‘ ( 𝑃 − 1 ) ) ∥ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) |
48 |
13
|
nnzd |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℤ ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℤ ) |
50 |
19
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( 1st ‘ 𝑘 ) ∈ ℤ ) |
51 |
23 28 29 30 3 34 36 50
|
etransclem42 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ∈ ℤ ) |
52 |
|
dvdsval2 |
⊢ ( ( ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℤ ∧ ( ! ‘ ( 𝑃 − 1 ) ) ≠ 0 ∧ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ∈ ℤ ) → ( ( ! ‘ ( 𝑃 − 1 ) ) ∥ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ↔ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) ) |
53 |
49 42 51 52
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( ! ‘ ( 𝑃 − 1 ) ) ∥ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ↔ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) ) |
54 |
47 53
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) |
55 |
20 54
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ∈ ℤ ) |
56 |
43 55
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) |
57 |
10 56
|
fsumzcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) |
58 |
40 57
|
eqeltrd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) |
59 |
5 58
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |