Metamath Proof Explorer


Theorem etransclem45

Description: K is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem45.p ( 𝜑𝑃 ∈ ℕ )
etransclem45.m ( 𝜑𝑀 ∈ ℕ0 )
etransclem45.f 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥𝑗 ) ↑ 𝑃 ) ) )
etransclem45.a ( 𝜑𝐴 : ℕ0 ⟶ ℤ )
etransclem45.k 𝐾 = ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) )
Assertion etransclem45 ( 𝜑𝐾 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 etransclem45.p ( 𝜑𝑃 ∈ ℕ )
2 etransclem45.m ( 𝜑𝑀 ∈ ℕ0 )
3 etransclem45.f 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥𝑗 ) ↑ 𝑃 ) ) )
4 etransclem45.a ( 𝜑𝐴 : ℕ0 ⟶ ℤ )
5 etransclem45.k 𝐾 = ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) )
6 fzfi ( 0 ... 𝑀 ) ∈ Fin
7 fzfi ( 0 ... 𝑅 ) ∈ Fin
8 xpfi ( ( ( 0 ... 𝑀 ) ∈ Fin ∧ ( 0 ... 𝑅 ) ∈ Fin ) → ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ∈ Fin )
9 6 7 8 mp2an ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ∈ Fin
10 9 a1i ( 𝜑 → ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ∈ Fin )
11 nnm1nn0 ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 )
12 1 11 syl ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 )
13 12 faccld ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℕ )
14 13 nncnd ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℂ )
15 4 adantr ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → 𝐴 : ℕ0 ⟶ ℤ )
16 xp1st ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) → ( 1st𝑘 ) ∈ ( 0 ... 𝑀 ) )
17 elfznn0 ( ( 1st𝑘 ) ∈ ( 0 ... 𝑀 ) → ( 1st𝑘 ) ∈ ℕ0 )
18 16 17 syl ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) → ( 1st𝑘 ) ∈ ℕ0 )
19 18 adantl ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( 1st𝑘 ) ∈ ℕ0 )
20 15 19 ffvelrnd ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( 𝐴 ‘ ( 1st𝑘 ) ) ∈ ℤ )
21 20 zcnd ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( 𝐴 ‘ ( 1st𝑘 ) ) ∈ ℂ )
22 reelprrecn ℝ ∈ { ℝ , ℂ }
23 22 a1i ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ℝ ∈ { ℝ , ℂ } )
24 reopn ℝ ∈ ( topGen ‘ ran (,) )
25 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
26 25 tgioo2 ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
27 24 26 eleqtri ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
28 27 a1i ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) )
29 1 adantr ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → 𝑃 ∈ ℕ )
30 2 adantr ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → 𝑀 ∈ ℕ0 )
31 xp2nd ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) → ( 2nd𝑘 ) ∈ ( 0 ... 𝑅 ) )
32 elfznn0 ( ( 2nd𝑘 ) ∈ ( 0 ... 𝑅 ) → ( 2nd𝑘 ) ∈ ℕ0 )
33 31 32 syl ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) → ( 2nd𝑘 ) ∈ ℕ0 )
34 33 adantl ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( 2nd𝑘 ) ∈ ℕ0 )
35 23 28 29 30 3 34 etransclem33 ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) : ℝ ⟶ ℂ )
36 19 nn0red ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( 1st𝑘 ) ∈ ℝ )
37 35 36 ffvelrnd ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) ∈ ℂ )
38 21 37 mulcld ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( 𝐴 ‘ ( 1st𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) ) ∈ ℂ )
39 13 nnne0d ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ≠ 0 )
40 10 14 38 39 fsumdivc ( 𝜑 → ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( ( 𝐴 ‘ ( 1st𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) )
41 14 adantr ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℂ )
42 39 adantr ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ! ‘ ( 𝑃 − 1 ) ) ≠ 0 )
43 21 37 41 42 divassd ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( ( 𝐴 ‘ ( 1st𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( ( 𝐴 ‘ ( 1st𝑘 ) ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) )
44 etransclem5 ( 𝑘 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ ℝ ↦ ( ( 𝑦𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ ℝ ↦ ( ( 𝑥𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) )
45 etransclem11 ( 𝑚 ∈ ℕ0 ↦ { 𝑑 ∈ ( ( 0 ... 𝑚 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑑𝑘 ) = 𝑚 } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑐 ∈ ( ( 0 ... 𝑛 ) ↑m ( 0 ... 𝑀 ) ) ∣ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑐𝑗 ) = 𝑛 } )
46 16 adantl ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( 1st𝑘 ) ∈ ( 0 ... 𝑀 ) )
47 23 28 29 30 3 34 44 45 46 36 etransclem37 ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ! ‘ ( 𝑃 − 1 ) ) ∥ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) )
48 13 nnzd ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℤ )
49 48 adantr ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℤ )
50 19 nn0zd ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( 1st𝑘 ) ∈ ℤ )
51 23 28 29 30 3 34 36 50 etransclem42 ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) ∈ ℤ )
52 dvdsval2 ( ( ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℤ ∧ ( ! ‘ ( 𝑃 − 1 ) ) ≠ 0 ∧ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) ∈ ℤ ) → ( ( ! ‘ ( 𝑃 − 1 ) ) ∥ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) ↔ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) )
53 49 42 51 52 syl3anc ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( ! ‘ ( 𝑃 − 1 ) ) ∥ ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) ↔ ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) )
54 47 53 mpbid ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ )
55 20 54 zmulcld ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( 𝐴 ‘ ( 1st𝑘 ) ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) ∈ ℤ )
56 43 55 eqeltrd ( ( 𝜑𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ) → ( ( ( 𝐴 ‘ ( 1st𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ )
57 10 56 fsumzcl ( 𝜑 → Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( ( 𝐴 ‘ ( 1st𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ )
58 40 57 eqeltrd ( 𝜑 → ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd𝑘 ) ) ‘ ( 1st𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ )
59 5 58 eqeltrid ( 𝜑𝐾 ∈ ℤ )