| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem45.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 2 |  | etransclem45.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 3 |  | etransclem45.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 4 |  | etransclem45.a | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℤ ) | 
						
							| 5 |  | etransclem45.k | ⊢ 𝐾  =  ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 6 |  | fzfi | ⊢ ( 0 ... 𝑀 )  ∈  Fin | 
						
							| 7 |  | fzfi | ⊢ ( 0 ... 𝑅 )  ∈  Fin | 
						
							| 8 |  | xpfi | ⊢ ( ( ( 0 ... 𝑀 )  ∈  Fin  ∧  ( 0 ... 𝑅 )  ∈  Fin )  →  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) )  ∈  Fin ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) )  ∈  Fin | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) )  ∈  Fin ) | 
						
							| 11 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 12 | 1 11 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 13 | 12 | faccld | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℕ ) | 
						
							| 14 | 13 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℂ ) | 
						
							| 15 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  𝐴 : ℕ0 ⟶ ℤ ) | 
						
							| 16 |  | xp1st | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) )  →  ( 1st  ‘ 𝑘 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 17 |  | elfznn0 | ⊢ ( ( 1st  ‘ 𝑘 )  ∈  ( 0 ... 𝑀 )  →  ( 1st  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) )  →  ( 1st  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( 1st  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 20 | 15 19 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℤ ) | 
						
							| 21 | 20 | zcnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 22 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 23 | 22 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 24 |  | reopn | ⊢ ℝ  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 25 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 26 | 24 25 | eleqtri | ⊢ ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 27 | 26 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 28 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  𝑃  ∈  ℕ ) | 
						
							| 29 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 30 |  | xp2nd | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) )  →  ( 2nd  ‘ 𝑘 )  ∈  ( 0 ... 𝑅 ) ) | 
						
							| 31 |  | elfznn0 | ⊢ ( ( 2nd  ‘ 𝑘 )  ∈  ( 0 ... 𝑅 )  →  ( 2nd  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 32 | 30 31 | syl | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) )  →  ( 2nd  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( 2nd  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 34 | 23 27 28 29 3 33 | etransclem33 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) : ℝ ⟶ ℂ ) | 
						
							| 35 | 19 | nn0red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( 1st  ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 36 | 34 35 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 37 | 21 36 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 38 | 13 | nnne0d | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ≠  0 ) | 
						
							| 39 | 10 14 37 38 | fsumdivc | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 40 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℂ ) | 
						
							| 41 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( ! ‘ ( 𝑃  −  1 ) )  ≠  0 ) | 
						
							| 42 | 21 36 40 41 | divassd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 43 |  | etransclem5 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 44 |  | etransclem11 | ⊢ ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } ) | 
						
							| 45 | 16 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( 1st  ‘ 𝑘 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 46 | 23 27 28 29 3 33 43 44 45 35 | etransclem37 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( ! ‘ ( 𝑃  −  1 ) )  ∥  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) ) | 
						
							| 47 | 13 | nnzd | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℤ ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℤ ) | 
						
							| 49 | 19 | nn0zd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( 1st  ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 50 | 23 27 28 29 3 33 35 49 | etransclem42 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℤ ) | 
						
							| 51 |  | dvdsval2 | ⊢ ( ( ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℤ  ∧  ( ! ‘ ( 𝑃  −  1 ) )  ≠  0  ∧  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℤ )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  ∥  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  ↔  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) ) | 
						
							| 52 | 48 41 50 51 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  ∥  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  ↔  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) ) | 
						
							| 53 | 46 52 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) | 
						
							| 54 | 20 53 | zmulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) )  ∈  ℤ ) | 
						
							| 55 | 42 54 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) )  →  ( ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) | 
						
							| 56 | 10 55 | fsumzcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) | 
						
							| 57 | 39 56 | eqeltrd | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) | 
						
							| 58 | 5 57 | eqeltrid | ⊢ ( 𝜑  →  𝐾  ∈  ℤ ) |