| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem37.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | etransclem37.x | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | etransclem37.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 4 |  | etransclem37.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 |  | etransclem37.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 6 |  | etransclem37.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 7 |  | etransclem37.h | ⊢ 𝐻  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 8 |  | etransclem37.c | ⊢ 𝐶  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } ) | 
						
							| 9 |  | etransclem37.9 | ⊢ ( 𝜑  →  𝐽  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 10 |  | etransclem37.j | ⊢ ( 𝜑  →  𝐽  ∈  𝑋 ) | 
						
							| 11 | 8 6 | etransclem16 | ⊢ ( 𝜑  →  ( 𝐶 ‘ 𝑁 )  ∈  Fin ) | 
						
							| 12 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 13 | 3 12 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | faccld | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℕ ) | 
						
							| 15 | 14 | nnzd | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℤ ) | 
						
							| 16 | 8 6 | etransclem12 | ⊢ ( 𝜑  →  ( 𝐶 ‘ 𝑁 )  =  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } ) | 
						
							| 17 | 16 | eleq2d | ⊢ ( 𝜑  →  ( 𝑐  ∈  ( 𝐶 ‘ 𝑁 )  ↔  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } ) ) | 
						
							| 18 | 17 | biimpa | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } ) | 
						
							| 19 |  | rabid | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  ↔  ( 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∧  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 ) ) | 
						
							| 20 | 19 | biimpi | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  →  ( 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∧  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 ) ) | 
						
							| 21 | 20 | simprd | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 ) | 
						
							| 22 | 18 21 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 ) | 
						
							| 23 | 22 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑁  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) ) | 
						
							| 24 | 23 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( ! ‘ 𝑁 )  =  ( ! ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  =  ( ( ! ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) ) ) | 
						
							| 26 |  | nfcv | ⊢ Ⅎ 𝑗 𝑐 | 
						
							| 27 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 28 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 29 | 28 | a1i | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  →  ℕ0  ∈  V ) | 
						
							| 30 |  | fzssnn0 | ⊢ ( 0 ... 𝑁 )  ⊆  ℕ0 | 
						
							| 31 |  | mapss | ⊢ ( ( ℕ0  ∈  V  ∧  ( 0 ... 𝑁 )  ⊆  ℕ0 )  →  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ⊆  ( ℕ0  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 32 | 29 30 31 | sylancl | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  →  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ⊆  ( ℕ0  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 33 | 20 | simpld | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  →  𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 34 | 32 33 | sseldd | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  →  𝑐  ∈  ( ℕ0  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 35 | 18 34 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑐  ∈  ( ℕ0  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 36 | 26 27 35 | mccl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( ( ! ‘ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 ) )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ∈  ℕ ) | 
						
							| 37 | 25 36 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ∈  ℕ ) | 
						
							| 38 | 37 | nnzd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ∈  ℤ ) | 
						
							| 39 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 40 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 41 |  | elmapi | ⊢ ( 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  →  𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) | 
						
							| 42 | 18 33 41 | 3syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) | 
						
							| 43 | 9 | elfzelzd | ⊢ ( 𝜑  →  𝐽  ∈  ℤ ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝐽  ∈  ℤ ) | 
						
							| 45 | 39 40 42 44 | etransclem10 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 𝐽 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ∈  ℤ ) | 
						
							| 46 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 47 | 39 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 48 | 42 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑐 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) | 
						
							| 49 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 50 |  | fzp1ss | ⊢ ( 0  ∈  ℤ  →  ( ( 0  +  1 ) ... 𝑀 )  ⊆  ( 0 ... 𝑀 ) ) | 
						
							| 51 | 49 50 | ax-mp | ⊢ ( ( 0  +  1 ) ... 𝑀 )  ⊆  ( 0 ... 𝑀 ) | 
						
							| 52 | 51 | sseli | ⊢ ( 𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 53 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 54 | 53 | oveq1i | ⊢ ( 1 ... 𝑀 )  =  ( ( 0  +  1 ) ... 𝑀 ) | 
						
							| 55 | 52 54 | eleq2s | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 57 | 44 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝐽  ∈  ℤ ) | 
						
							| 58 | 47 48 56 57 | etransclem3 | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) )  ∈  ℤ ) | 
						
							| 59 | 46 58 | fprodzcl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) )  ∈  ℤ ) | 
						
							| 60 | 45 59 | zmulcld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 𝐽 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) )  ∈  ℤ ) | 
						
							| 61 | 38 60 | zmulcld | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 𝐽 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) )  ∈  ℤ ) | 
						
							| 62 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 63 |  | etransclem11 | ⊢ ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } )  =  ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) | 
						
							| 64 | 8 63 | eqtri | ⊢ 𝐶  =  ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } ) | 
						
							| 65 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ) | 
						
							| 66 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  𝐽  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 67 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 68 | 67 | fveq2d | ⊢ ( 𝑗  =  𝑘  →  ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  =  ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) ) | 
						
							| 69 | 68 | cbvprodv | ⊢ ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) )  =  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) | 
						
							| 70 | 69 | oveq2i | ⊢ ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  =  ( ( ! ‘ 𝑁 )  /  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) ) | 
						
							| 71 | 67 | breq2d | ⊢ ( 𝑗  =  𝑘  →  ( 𝑃  <  ( 𝑐 ‘ 𝑗 )  ↔  𝑃  <  ( 𝑐 ‘ 𝑘 ) ) ) | 
						
							| 72 | 67 | oveq2d | ⊢ ( 𝑗  =  𝑘  →  ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) )  =  ( 𝑃  −  ( 𝑐 ‘ 𝑘 ) ) ) | 
						
							| 73 | 72 | fveq2d | ⊢ ( 𝑗  =  𝑘  →  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) )  =  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑘 ) ) ) ) | 
						
							| 74 | 73 | oveq2d | ⊢ ( 𝑗  =  𝑘  →  ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  =  ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑘 ) ) ) ) ) | 
						
							| 75 |  | oveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐽  −  𝑗 )  =  ( 𝐽  −  𝑘 ) ) | 
						
							| 76 | 75 72 | oveq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) )  =  ( ( 𝐽  −  𝑘 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑘 ) ) ) ) | 
						
							| 77 | 74 76 | oveq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  =  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑘 ) ) ) )  ·  ( ( 𝐽  −  𝑘 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑘 ) ) ) ) ) | 
						
							| 78 | 71 77 | ifbieq2d | ⊢ ( 𝑗  =  𝑘  →  if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) )  =  if ( 𝑃  <  ( 𝑐 ‘ 𝑘 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑘 ) ) ) )  ·  ( ( 𝐽  −  𝑘 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 79 | 78 | cbvprodv | ⊢ ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) )  =  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑘 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑘 ) ) ) )  ·  ( ( 𝐽  −  𝑘 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑘 ) ) ) ) ) | 
						
							| 80 | 79 | oveq2i | ⊢ ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 𝐽 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) )  =  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 𝐽 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑘 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑘 ) ) ) )  ·  ( ( 𝐽  −  𝑘 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 81 | 70 80 | oveq12i | ⊢ ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 𝐽 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) )  =  ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑘  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑘 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 𝐽 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑘  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑘 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑘 ) ) ) )  ·  ( ( 𝐽  −  𝑘 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 82 | 39 40 62 64 65 66 81 | etransclem28 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐶 ‘ 𝑁 ) )  →  ( ! ‘ ( 𝑃  −  1 ) )  ∥  ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 𝐽 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 83 | 11 15 61 82 | fsumdvds | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∥  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 𝐽 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 84 | 1 2 3 4 5 6 7 8 10 | etransclem31 | ⊢ ( 𝜑  →  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ‘ 𝐽 )  =  Σ 𝑐  ∈  ( 𝐶 ‘ 𝑁 ) ( ( ( ! ‘ 𝑁 )  /  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ! ‘ ( 𝑐 ‘ 𝑗 ) ) )  ·  ( if ( ( 𝑃  −  1 )  <  ( 𝑐 ‘ 0 ) ,  0 ,  ( ( ( ! ‘ ( 𝑃  −  1 ) )  /  ( ! ‘ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) )  ·  ( 𝐽 ↑ ( ( 𝑃  −  1 )  −  ( 𝑐 ‘ 0 ) ) ) ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝑐 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝑐 ‘ 𝑗 ) ) ) ) ) ) ) ) | 
						
							| 85 | 83 84 | breqtrrd | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∥  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ‘ 𝐽 ) ) |