| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem16.c | ⊢ 𝐶  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } ) | 
						
							| 2 |  | etransclem16.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 | 1 2 | etransclem12 | ⊢ ( 𝜑  →  ( 𝐶 ‘ 𝑁 )  =  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 } ) | 
						
							| 4 |  | fzfi | ⊢ ( 0 ... 𝑁 )  ∈  Fin | 
						
							| 5 |  | fzfi | ⊢ ( 0 ... 𝑀 )  ∈  Fin | 
						
							| 6 |  | mapfi | ⊢ ( ( ( 0 ... 𝑁 )  ∈  Fin  ∧  ( 0 ... 𝑀 )  ∈  Fin )  →  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∈  Fin ) | 
						
							| 7 | 4 5 6 | mp2an | ⊢ ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∈  Fin | 
						
							| 8 |  | ssrab2 | ⊢ { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  ⊆  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) ) | 
						
							| 9 |  | ssfi | ⊢ ( ( ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∈  Fin  ∧  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  ⊆  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) ) )  →  { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  ∈  Fin ) | 
						
							| 10 | 7 8 9 | mp2an | ⊢ { 𝑐  ∈  ( ( 0 ... 𝑁 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 }  ∈  Fin | 
						
							| 11 | 3 10 | eqeltrdi | ⊢ ( 𝜑  →  ( 𝐶 ‘ 𝑁 )  ∈  Fin ) |