Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem37.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
etransclem37.x |
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
3 |
|
etransclem37.p |
|- ( ph -> P e. NN ) |
4 |
|
etransclem37.m |
|- ( ph -> M e. NN0 ) |
5 |
|
etransclem37.f |
|- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
6 |
|
etransclem37.n |
|- ( ph -> N e. NN0 ) |
7 |
|
etransclem37.h |
|- H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
8 |
|
etransclem37.c |
|- C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) |
9 |
|
etransclem37.9 |
|- ( ph -> J e. ( 0 ... M ) ) |
10 |
|
etransclem37.j |
|- ( ph -> J e. X ) |
11 |
8 6
|
etransclem16 |
|- ( ph -> ( C ` N ) e. Fin ) |
12 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
13 |
3 12
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
14 |
13
|
faccld |
|- ( ph -> ( ! ` ( P - 1 ) ) e. NN ) |
15 |
14
|
nnzd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. ZZ ) |
16 |
8 6
|
etransclem12 |
|- ( ph -> ( C ` N ) = { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |
17 |
16
|
eleq2d |
|- ( ph -> ( c e. ( C ` N ) <-> c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) ) |
18 |
17
|
biimpa |
|- ( ( ph /\ c e. ( C ` N ) ) -> c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |
19 |
|
rabid |
|- ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } <-> ( c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( c ` j ) = N ) ) |
20 |
19
|
biimpi |
|- ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> ( c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( c ` j ) = N ) ) |
21 |
20
|
simprd |
|- ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> sum_ j e. ( 0 ... M ) ( c ` j ) = N ) |
22 |
18 21
|
syl |
|- ( ( ph /\ c e. ( C ` N ) ) -> sum_ j e. ( 0 ... M ) ( c ` j ) = N ) |
23 |
22
|
eqcomd |
|- ( ( ph /\ c e. ( C ` N ) ) -> N = sum_ j e. ( 0 ... M ) ( c ` j ) ) |
24 |
23
|
fveq2d |
|- ( ( ph /\ c e. ( C ` N ) ) -> ( ! ` N ) = ( ! ` sum_ j e. ( 0 ... M ) ( c ` j ) ) ) |
25 |
24
|
oveq1d |
|- ( ( ph /\ c e. ( C ` N ) ) -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) = ( ( ! ` sum_ j e. ( 0 ... M ) ( c ` j ) ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) ) |
26 |
|
nfcv |
|- F/_ j c |
27 |
|
fzfid |
|- ( ( ph /\ c e. ( C ` N ) ) -> ( 0 ... M ) e. Fin ) |
28 |
|
nn0ex |
|- NN0 e. _V |
29 |
28
|
a1i |
|- ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> NN0 e. _V ) |
30 |
|
fzssnn0 |
|- ( 0 ... N ) C_ NN0 |
31 |
|
mapss |
|- ( ( NN0 e. _V /\ ( 0 ... N ) C_ NN0 ) -> ( ( 0 ... N ) ^m ( 0 ... M ) ) C_ ( NN0 ^m ( 0 ... M ) ) ) |
32 |
29 30 31
|
sylancl |
|- ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> ( ( 0 ... N ) ^m ( 0 ... M ) ) C_ ( NN0 ^m ( 0 ... M ) ) ) |
33 |
20
|
simpld |
|- ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) ) |
34 |
32 33
|
sseldd |
|- ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> c e. ( NN0 ^m ( 0 ... M ) ) ) |
35 |
18 34
|
syl |
|- ( ( ph /\ c e. ( C ` N ) ) -> c e. ( NN0 ^m ( 0 ... M ) ) ) |
36 |
26 27 35
|
mccl |
|- ( ( ph /\ c e. ( C ` N ) ) -> ( ( ! ` sum_ j e. ( 0 ... M ) ( c ` j ) ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) e. NN ) |
37 |
25 36
|
eqeltrd |
|- ( ( ph /\ c e. ( C ` N ) ) -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) e. NN ) |
38 |
37
|
nnzd |
|- ( ( ph /\ c e. ( C ` N ) ) -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) e. ZZ ) |
39 |
3
|
adantr |
|- ( ( ph /\ c e. ( C ` N ) ) -> P e. NN ) |
40 |
4
|
adantr |
|- ( ( ph /\ c e. ( C ` N ) ) -> M e. NN0 ) |
41 |
|
elmapi |
|- ( c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) -> c : ( 0 ... M ) --> ( 0 ... N ) ) |
42 |
18 33 41
|
3syl |
|- ( ( ph /\ c e. ( C ` N ) ) -> c : ( 0 ... M ) --> ( 0 ... N ) ) |
43 |
9
|
elfzelzd |
|- ( ph -> J e. ZZ ) |
44 |
43
|
adantr |
|- ( ( ph /\ c e. ( C ` N ) ) -> J e. ZZ ) |
45 |
39 40 42 44
|
etransclem10 |
|- ( ( ph /\ c e. ( C ` N ) ) -> if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) e. ZZ ) |
46 |
|
fzfid |
|- ( ( ph /\ c e. ( C ` N ) ) -> ( 1 ... M ) e. Fin ) |
47 |
39
|
adantr |
|- ( ( ( ph /\ c e. ( C ` N ) ) /\ j e. ( 1 ... M ) ) -> P e. NN ) |
48 |
42
|
adantr |
|- ( ( ( ph /\ c e. ( C ` N ) ) /\ j e. ( 1 ... M ) ) -> c : ( 0 ... M ) --> ( 0 ... N ) ) |
49 |
|
0z |
|- 0 e. ZZ |
50 |
|
fzp1ss |
|- ( 0 e. ZZ -> ( ( 0 + 1 ) ... M ) C_ ( 0 ... M ) ) |
51 |
49 50
|
ax-mp |
|- ( ( 0 + 1 ) ... M ) C_ ( 0 ... M ) |
52 |
51
|
sseli |
|- ( j e. ( ( 0 + 1 ) ... M ) -> j e. ( 0 ... M ) ) |
53 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
54 |
53
|
oveq1i |
|- ( 1 ... M ) = ( ( 0 + 1 ) ... M ) |
55 |
52 54
|
eleq2s |
|- ( j e. ( 1 ... M ) -> j e. ( 0 ... M ) ) |
56 |
55
|
adantl |
|- ( ( ( ph /\ c e. ( C ` N ) ) /\ j e. ( 1 ... M ) ) -> j e. ( 0 ... M ) ) |
57 |
44
|
adantr |
|- ( ( ( ph /\ c e. ( C ` N ) ) /\ j e. ( 1 ... M ) ) -> J e. ZZ ) |
58 |
47 48 56 57
|
etransclem3 |
|- ( ( ( ph /\ c e. ( C ` N ) ) /\ j e. ( 1 ... M ) ) -> if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) e. ZZ ) |
59 |
46 58
|
fprodzcl |
|- ( ( ph /\ c e. ( C ` N ) ) -> prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) e. ZZ ) |
60 |
45 59
|
zmulcld |
|- ( ( ph /\ c e. ( C ` N ) ) -> ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) e. ZZ ) |
61 |
38 60
|
zmulcld |
|- ( ( ph /\ c e. ( C ` N ) ) -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) e. ZZ ) |
62 |
6
|
adantr |
|- ( ( ph /\ c e. ( C ` N ) ) -> N e. NN0 ) |
63 |
|
etransclem11 |
|- ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) = ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) |
64 |
8 63
|
eqtri |
|- C = ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) |
65 |
|
simpr |
|- ( ( ph /\ c e. ( C ` N ) ) -> c e. ( C ` N ) ) |
66 |
9
|
adantr |
|- ( ( ph /\ c e. ( C ` N ) ) -> J e. ( 0 ... M ) ) |
67 |
|
fveq2 |
|- ( j = k -> ( c ` j ) = ( c ` k ) ) |
68 |
67
|
fveq2d |
|- ( j = k -> ( ! ` ( c ` j ) ) = ( ! ` ( c ` k ) ) ) |
69 |
68
|
cbvprodv |
|- prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) = prod_ k e. ( 0 ... M ) ( ! ` ( c ` k ) ) |
70 |
69
|
oveq2i |
|- ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) = ( ( ! ` N ) / prod_ k e. ( 0 ... M ) ( ! ` ( c ` k ) ) ) |
71 |
67
|
breq2d |
|- ( j = k -> ( P < ( c ` j ) <-> P < ( c ` k ) ) ) |
72 |
67
|
oveq2d |
|- ( j = k -> ( P - ( c ` j ) ) = ( P - ( c ` k ) ) ) |
73 |
72
|
fveq2d |
|- ( j = k -> ( ! ` ( P - ( c ` j ) ) ) = ( ! ` ( P - ( c ` k ) ) ) ) |
74 |
73
|
oveq2d |
|- ( j = k -> ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) = ( ( ! ` P ) / ( ! ` ( P - ( c ` k ) ) ) ) ) |
75 |
|
oveq2 |
|- ( j = k -> ( J - j ) = ( J - k ) ) |
76 |
75 72
|
oveq12d |
|- ( j = k -> ( ( J - j ) ^ ( P - ( c ` j ) ) ) = ( ( J - k ) ^ ( P - ( c ` k ) ) ) ) |
77 |
74 76
|
oveq12d |
|- ( j = k -> ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) = ( ( ( ! ` P ) / ( ! ` ( P - ( c ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( c ` k ) ) ) ) ) |
78 |
71 77
|
ifbieq2d |
|- ( j = k -> if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) = if ( P < ( c ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( c ` k ) ) ) ) ) ) |
79 |
78
|
cbvprodv |
|- prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) = prod_ k e. ( 1 ... M ) if ( P < ( c ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( c ` k ) ) ) ) ) |
80 |
79
|
oveq2i |
|- ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) = ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ k e. ( 1 ... M ) if ( P < ( c ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( c ` k ) ) ) ) ) ) |
81 |
70 80
|
oveq12i |
|- ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) = ( ( ( ! ` N ) / prod_ k e. ( 0 ... M ) ( ! ` ( c ` k ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ k e. ( 1 ... M ) if ( P < ( c ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( c ` k ) ) ) ) ) ) ) |
82 |
39 40 62 64 65 66 81
|
etransclem28 |
|- ( ( ph /\ c e. ( C ` N ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) |
83 |
11 15 61 82
|
fsumdvds |
|- ( ph -> ( ! ` ( P - 1 ) ) || sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) |
84 |
1 2 3 4 5 6 7 8 10
|
etransclem31 |
|- ( ph -> ( ( ( S Dn F ) ` N ) ` J ) = sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) |
85 |
83 84
|
breqtrrd |
|- ( ph -> ( ! ` ( P - 1 ) ) || ( ( ( S Dn F ) ` N ) ` J ) ) |