| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem28.p |
|- ( ph -> P e. NN ) |
| 2 |
|
etransclem28.m |
|- ( ph -> M e. NN0 ) |
| 3 |
|
etransclem28.n |
|- ( ph -> N e. NN0 ) |
| 4 |
|
etransclem28.c |
|- C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) |
| 5 |
|
etransclem28.d |
|- ( ph -> D e. ( C ` N ) ) |
| 6 |
|
etransclem28.j |
|- ( ph -> J e. ( 0 ... M ) ) |
| 7 |
|
etransclem28.t |
|- T = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) |
| 8 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
| 9 |
1 8
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
| 10 |
9
|
faccld |
|- ( ph -> ( ! ` ( P - 1 ) ) e. NN ) |
| 11 |
10
|
nnzd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. ZZ ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ J = 0 ) -> ( ! ` ( P - 1 ) ) e. ZZ ) |
| 13 |
4 3
|
etransclem12 |
|- ( ph -> ( C ` N ) = { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |
| 14 |
5 13
|
eleqtrd |
|- ( ph -> D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |
| 15 |
|
fveq1 |
|- ( c = D -> ( c ` j ) = ( D ` j ) ) |
| 16 |
15
|
sumeq2sdv |
|- ( c = D -> sum_ j e. ( 0 ... M ) ( c ` j ) = sum_ j e. ( 0 ... M ) ( D ` j ) ) |
| 17 |
16
|
eqeq1d |
|- ( c = D -> ( sum_ j e. ( 0 ... M ) ( c ` j ) = N <-> sum_ j e. ( 0 ... M ) ( D ` j ) = N ) ) |
| 18 |
17
|
elrab |
|- ( D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } <-> ( D e. ( ( 0 ... N ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( D ` j ) = N ) ) |
| 19 |
18
|
simprbi |
|- ( D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> sum_ j e. ( 0 ... M ) ( D ` j ) = N ) |
| 20 |
14 19
|
syl |
|- ( ph -> sum_ j e. ( 0 ... M ) ( D ` j ) = N ) |
| 21 |
20
|
eqcomd |
|- ( ph -> N = sum_ j e. ( 0 ... M ) ( D ` j ) ) |
| 22 |
21
|
fveq2d |
|- ( ph -> ( ! ` N ) = ( ! ` sum_ j e. ( 0 ... M ) ( D ` j ) ) ) |
| 23 |
22
|
oveq1d |
|- ( ph -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) = ( ( ! ` sum_ j e. ( 0 ... M ) ( D ` j ) ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) ) |
| 24 |
|
nfcv |
|- F/_ j D |
| 25 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
| 26 |
|
nn0ex |
|- NN0 e. _V |
| 27 |
|
fzssnn0 |
|- ( 0 ... N ) C_ NN0 |
| 28 |
27
|
a1i |
|- ( D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> ( 0 ... N ) C_ NN0 ) |
| 29 |
|
mapss |
|- ( ( NN0 e. _V /\ ( 0 ... N ) C_ NN0 ) -> ( ( 0 ... N ) ^m ( 0 ... M ) ) C_ ( NN0 ^m ( 0 ... M ) ) ) |
| 30 |
26 28 29
|
sylancr |
|- ( D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> ( ( 0 ... N ) ^m ( 0 ... M ) ) C_ ( NN0 ^m ( 0 ... M ) ) ) |
| 31 |
|
elrabi |
|- ( D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> D e. ( ( 0 ... N ) ^m ( 0 ... M ) ) ) |
| 32 |
30 31
|
sseldd |
|- ( D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> D e. ( NN0 ^m ( 0 ... M ) ) ) |
| 33 |
14 32
|
syl |
|- ( ph -> D e. ( NN0 ^m ( 0 ... M ) ) ) |
| 34 |
24 25 33
|
mccl |
|- ( ph -> ( ( ! ` sum_ j e. ( 0 ... M ) ( D ` j ) ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. NN ) |
| 35 |
23 34
|
eqeltrd |
|- ( ph -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. NN ) |
| 36 |
35
|
nnzd |
|- ( ph -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. ZZ ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ J = 0 ) -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. ZZ ) |
| 38 |
|
df-neg |
|- -u j = ( 0 - j ) |
| 39 |
|
oveq1 |
|- ( J = 0 -> ( J - j ) = ( 0 - j ) ) |
| 40 |
38 39
|
eqtr4id |
|- ( J = 0 -> -u j = ( J - j ) ) |
| 41 |
40
|
oveq1d |
|- ( J = 0 -> ( -u j ^ ( P - ( D ` j ) ) ) = ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) |
| 42 |
41
|
oveq2d |
|- ( J = 0 -> ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) = ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) |
| 43 |
42
|
ifeq2d |
|- ( J = 0 -> if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) = if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) |
| 44 |
43
|
prodeq2ad |
|- ( J = 0 -> prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) = prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) |
| 45 |
44
|
adantl |
|- ( ( ph /\ J = 0 ) -> prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) = prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) |
| 46 |
14 31
|
syl |
|- ( ph -> D e. ( ( 0 ... N ) ^m ( 0 ... M ) ) ) |
| 47 |
|
elmapi |
|- ( D e. ( ( 0 ... N ) ^m ( 0 ... M ) ) -> D : ( 0 ... M ) --> ( 0 ... N ) ) |
| 48 |
46 47
|
syl |
|- ( ph -> D : ( 0 ... M ) --> ( 0 ... N ) ) |
| 49 |
1 48 6
|
etransclem7 |
|- ( ph -> prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) |
| 50 |
49
|
adantr |
|- ( ( ph /\ J = 0 ) -> prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) |
| 51 |
45 50
|
eqeltrd |
|- ( ( ph /\ J = 0 ) -> prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) |
| 52 |
12 51
|
zmulcld |
|- ( ( ph /\ J = 0 ) -> ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) e. ZZ ) |
| 53 |
12 37 52
|
3jca |
|- ( ( ph /\ J = 0 ) -> ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. ZZ /\ ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) e. ZZ ) ) |
| 54 |
|
dvdsmul1 |
|- ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) -> ( ! ` ( P - 1 ) ) || ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) ) |
| 55 |
12 51 54
|
syl2anc |
|- ( ( ph /\ J = 0 ) -> ( ! ` ( P - 1 ) ) || ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) ) |
| 56 |
|
dvdsmultr2 |
|- ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. ZZ /\ ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) e. ZZ ) -> ( ( ! ` ( P - 1 ) ) || ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) ) ) ) |
| 57 |
53 55 56
|
sylc |
|- ( ( ph /\ J = 0 ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) ) ) |
| 58 |
57
|
adantr |
|- ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) ) ) |
| 59 |
1
|
ad2antrr |
|- ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> P e. NN ) |
| 60 |
2
|
ad2antrr |
|- ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> M e. NN0 ) |
| 61 |
48
|
ad2antrr |
|- ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> D : ( 0 ... M ) --> ( 0 ... N ) ) |
| 62 |
|
eqid |
|- ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) |
| 63 |
|
simplr |
|- ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> J = 0 ) |
| 64 |
|
simpr |
|- ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> ( D ` 0 ) = ( P - 1 ) ) |
| 65 |
59 60 61 62 63 64
|
etransclem14 |
|- ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) ) ) |
| 66 |
58 65
|
breqtrrd |
|- ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) |
| 67 |
|
dvds0 |
|- ( ( ! ` ( P - 1 ) ) e. ZZ -> ( ! ` ( P - 1 ) ) || 0 ) |
| 68 |
11 67
|
syl |
|- ( ph -> ( ! ` ( P - 1 ) ) || 0 ) |
| 69 |
68
|
ad2antrr |
|- ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> ( ! ` ( P - 1 ) ) || 0 ) |
| 70 |
1
|
ad2antrr |
|- ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> P e. NN ) |
| 71 |
2
|
ad2antrr |
|- ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> M e. NN0 ) |
| 72 |
3
|
ad2antrr |
|- ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> N e. NN0 ) |
| 73 |
48
|
ad2antrr |
|- ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> D : ( 0 ... M ) --> ( 0 ... N ) ) |
| 74 |
|
simplr |
|- ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> J = 0 ) |
| 75 |
|
neqne |
|- ( -. ( D ` 0 ) = ( P - 1 ) -> ( D ` 0 ) =/= ( P - 1 ) ) |
| 76 |
75
|
adantl |
|- ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> ( D ` 0 ) =/= ( P - 1 ) ) |
| 77 |
70 71 72 73 62 74 76
|
etransclem15 |
|- ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) = 0 ) |
| 78 |
69 77
|
breqtrrd |
|- ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) |
| 79 |
66 78
|
pm2.61dan |
|- ( ( ph /\ J = 0 ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) |
| 80 |
1
|
nnzd |
|- ( ph -> P e. ZZ ) |
| 81 |
|
elfznn0 |
|- ( J e. ( 0 ... M ) -> J e. NN0 ) |
| 82 |
6 81
|
syl |
|- ( ph -> J e. NN0 ) |
| 83 |
82
|
nn0zd |
|- ( ph -> J e. ZZ ) |
| 84 |
1 2 3 83 4 5
|
etransclem26 |
|- ( ph -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) e. ZZ ) |
| 85 |
11 80 84
|
3jca |
|- ( ph -> ( ( ! ` ( P - 1 ) ) e. ZZ /\ P e. ZZ /\ ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) e. ZZ ) ) |
| 86 |
85
|
adantr |
|- ( ( ph /\ -. J = 0 ) -> ( ( ! ` ( P - 1 ) ) e. ZZ /\ P e. ZZ /\ ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) e. ZZ ) ) |
| 87 |
1
|
nncnd |
|- ( ph -> P e. CC ) |
| 88 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 89 |
87 88
|
npcand |
|- ( ph -> ( ( P - 1 ) + 1 ) = P ) |
| 90 |
89
|
eqcomd |
|- ( ph -> P = ( ( P - 1 ) + 1 ) ) |
| 91 |
90
|
fveq2d |
|- ( ph -> ( ! ` P ) = ( ! ` ( ( P - 1 ) + 1 ) ) ) |
| 92 |
|
facp1 |
|- ( ( P - 1 ) e. NN0 -> ( ! ` ( ( P - 1 ) + 1 ) ) = ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) ) |
| 93 |
9 92
|
syl |
|- ( ph -> ( ! ` ( ( P - 1 ) + 1 ) ) = ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) ) |
| 94 |
89
|
oveq2d |
|- ( ph -> ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) = ( ( ! ` ( P - 1 ) ) x. P ) ) |
| 95 |
91 93 94
|
3eqtrrd |
|- ( ph -> ( ( ! ` ( P - 1 ) ) x. P ) = ( ! ` P ) ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ -. J = 0 ) -> ( ( ! ` ( P - 1 ) ) x. P ) = ( ! ` P ) ) |
| 97 |
1
|
adantr |
|- ( ( ph /\ -. J = 0 ) -> P e. NN ) |
| 98 |
2
|
adantr |
|- ( ( ph /\ -. J = 0 ) -> M e. NN0 ) |
| 99 |
3
|
adantr |
|- ( ( ph /\ -. J = 0 ) -> N e. NN0 ) |
| 100 |
48
|
adantr |
|- ( ( ph /\ -. J = 0 ) -> D : ( 0 ... M ) --> ( 0 ... N ) ) |
| 101 |
20
|
adantr |
|- ( ( ph /\ -. J = 0 ) -> sum_ j e. ( 0 ... M ) ( D ` j ) = N ) |
| 102 |
|
1zzd |
|- ( ( ph /\ -. J = 0 ) -> 1 e. ZZ ) |
| 103 |
2
|
nn0zd |
|- ( ph -> M e. ZZ ) |
| 104 |
103
|
adantr |
|- ( ( ph /\ -. J = 0 ) -> M e. ZZ ) |
| 105 |
83
|
adantr |
|- ( ( ph /\ -. J = 0 ) -> J e. ZZ ) |
| 106 |
82
|
adantr |
|- ( ( ph /\ -. J = 0 ) -> J e. NN0 ) |
| 107 |
|
neqne |
|- ( -. J = 0 -> J =/= 0 ) |
| 108 |
107
|
adantl |
|- ( ( ph /\ -. J = 0 ) -> J =/= 0 ) |
| 109 |
|
elnnne0 |
|- ( J e. NN <-> ( J e. NN0 /\ J =/= 0 ) ) |
| 110 |
106 108 109
|
sylanbrc |
|- ( ( ph /\ -. J = 0 ) -> J e. NN ) |
| 111 |
110
|
nnge1d |
|- ( ( ph /\ -. J = 0 ) -> 1 <_ J ) |
| 112 |
|
elfzle2 |
|- ( J e. ( 0 ... M ) -> J <_ M ) |
| 113 |
6 112
|
syl |
|- ( ph -> J <_ M ) |
| 114 |
113
|
adantr |
|- ( ( ph /\ -. J = 0 ) -> J <_ M ) |
| 115 |
102 104 105 111 114
|
elfzd |
|- ( ( ph /\ -. J = 0 ) -> J e. ( 1 ... M ) ) |
| 116 |
97 98 99 100 101 62 115
|
etransclem25 |
|- ( ( ph /\ -. J = 0 ) -> ( ! ` P ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) |
| 117 |
96 116
|
eqbrtrd |
|- ( ( ph /\ -. J = 0 ) -> ( ( ! ` ( P - 1 ) ) x. P ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) |
| 118 |
|
muldvds1 |
|- ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ P e. ZZ /\ ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) e. ZZ ) -> ( ( ( ! ` ( P - 1 ) ) x. P ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) ) |
| 119 |
86 117 118
|
sylc |
|- ( ( ph /\ -. J = 0 ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) |
| 120 |
79 119
|
pm2.61dan |
|- ( ph -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) |
| 121 |
120 7
|
breqtrrdi |
|- ( ph -> ( ! ` ( P - 1 ) ) || T ) |