| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem14.n |  |-  ( ph -> P e. NN ) | 
						
							| 2 |  | etransclem14.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 3 |  | etransclem14.c |  |-  ( ph -> C : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 4 |  | etransclem14.t |  |-  T = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) ) | 
						
							| 5 |  | etransclem14.j |  |-  ( ph -> J = 0 ) | 
						
							| 6 |  | etransclem14.cpm1 |  |-  ( ph -> ( C ` 0 ) = ( P - 1 ) ) | 
						
							| 7 |  | fzssre |  |-  ( 0 ... N ) C_ RR | 
						
							| 8 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 9 | 2 8 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 10 |  | eluzfz1 |  |-  ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ph -> 0 e. ( 0 ... M ) ) | 
						
							| 12 | 3 11 | ffvelcdmd |  |-  ( ph -> ( C ` 0 ) e. ( 0 ... N ) ) | 
						
							| 13 | 7 12 | sselid |  |-  ( ph -> ( C ` 0 ) e. RR ) | 
						
							| 14 | 6 13 | eqeltrrd |  |-  ( ph -> ( P - 1 ) e. RR ) | 
						
							| 15 | 13 14 | lttri3d |  |-  ( ph -> ( ( C ` 0 ) = ( P - 1 ) <-> ( -. ( C ` 0 ) < ( P - 1 ) /\ -. ( P - 1 ) < ( C ` 0 ) ) ) ) | 
						
							| 16 | 6 15 | mpbid |  |-  ( ph -> ( -. ( C ` 0 ) < ( P - 1 ) /\ -. ( P - 1 ) < ( C ` 0 ) ) ) | 
						
							| 17 | 16 | simprd |  |-  ( ph -> -. ( P - 1 ) < ( C ` 0 ) ) | 
						
							| 18 | 17 | iffalsed |  |-  ( ph -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) | 
						
							| 19 | 14 | recnd |  |-  ( ph -> ( P - 1 ) e. CC ) | 
						
							| 20 | 6 | eqcomd |  |-  ( ph -> ( P - 1 ) = ( C ` 0 ) ) | 
						
							| 21 | 19 20 | subeq0bd |  |-  ( ph -> ( ( P - 1 ) - ( C ` 0 ) ) = 0 ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ph -> ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) = ( ! ` 0 ) ) | 
						
							| 23 |  | fac0 |  |-  ( ! ` 0 ) = 1 | 
						
							| 24 | 22 23 | eqtrdi |  |-  ( ph -> ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) = 1 ) | 
						
							| 25 | 24 | oveq2d |  |-  ( ph -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) = ( ( ! ` ( P - 1 ) ) / 1 ) ) | 
						
							| 26 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 27 | 1 26 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 28 | 27 | faccld |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. NN ) | 
						
							| 29 | 28 | nncnd |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. CC ) | 
						
							| 30 | 29 | div1d |  |-  ( ph -> ( ( ! ` ( P - 1 ) ) / 1 ) = ( ! ` ( P - 1 ) ) ) | 
						
							| 31 | 25 30 | eqtrd |  |-  ( ph -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) = ( ! ` ( P - 1 ) ) ) | 
						
							| 32 | 5 21 | oveq12d |  |-  ( ph -> ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) = ( 0 ^ 0 ) ) | 
						
							| 33 |  | 0exp0e1 |  |-  ( 0 ^ 0 ) = 1 | 
						
							| 34 | 32 33 | eqtrdi |  |-  ( ph -> ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) = 1 ) | 
						
							| 35 | 31 34 | oveq12d |  |-  ( ph -> ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) = ( ( ! ` ( P - 1 ) ) x. 1 ) ) | 
						
							| 36 | 29 | mulridd |  |-  ( ph -> ( ( ! ` ( P - 1 ) ) x. 1 ) = ( ! ` ( P - 1 ) ) ) | 
						
							| 37 | 18 35 36 | 3eqtrd |  |-  ( ph -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = ( ! ` ( P - 1 ) ) ) | 
						
							| 38 | 5 | oveq1d |  |-  ( ph -> ( J - j ) = ( 0 - j ) ) | 
						
							| 39 |  | df-neg |  |-  -u j = ( 0 - j ) | 
						
							| 40 | 38 39 | eqtr4di |  |-  ( ph -> ( J - j ) = -u j ) | 
						
							| 41 | 40 | oveq1d |  |-  ( ph -> ( ( J - j ) ^ ( P - ( C ` j ) ) ) = ( -u j ^ ( P - ( C ` j ) ) ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( ph -> ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) = ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( -u j ^ ( P - ( C ` j ) ) ) ) ) | 
						
							| 43 | 42 | ifeq2d |  |-  ( ph -> if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) = if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( -u j ^ ( P - ( C ` j ) ) ) ) ) ) | 
						
							| 44 | 43 | prodeq2ad |  |-  ( ph -> prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) = prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( -u j ^ ( P - ( C ` j ) ) ) ) ) ) | 
						
							| 45 | 37 44 | oveq12d |  |-  ( ph -> ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) = ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( -u j ^ ( P - ( C ` j ) ) ) ) ) ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( ph -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) ) = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( -u j ^ ( P - ( C ` j ) ) ) ) ) ) ) ) | 
						
							| 47 | 4 46 | eqtrid |  |-  ( ph -> T = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( -u j ^ ( P - ( C ` j ) ) ) ) ) ) ) ) |