| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem15.p |  |-  ( ph -> P e. NN ) | 
						
							| 2 |  | etransclem15.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 3 |  | etransclem15.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 4 |  | etransclem15.c |  |-  ( ph -> C : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 5 |  | etransclem15.t |  |-  T = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) ) | 
						
							| 6 |  | etransclem15.j |  |-  ( ph -> J = 0 ) | 
						
							| 7 |  | etransclem15.cpm1 |  |-  ( ph -> ( C ` 0 ) =/= ( P - 1 ) ) | 
						
							| 8 | 5 | a1i |  |-  ( ph -> T = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) ) ) | 
						
							| 9 |  | iftrue |  |-  ( ( P - 1 ) < ( C ` 0 ) -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = 0 ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ ( P - 1 ) < ( C ` 0 ) ) -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = 0 ) | 
						
							| 11 |  | iffalse |  |-  ( -. ( P - 1 ) < ( C ` 0 ) -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) | 
						
							| 13 | 6 | oveq1d |  |-  ( ph -> ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) = ( 0 ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) = ( 0 ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) | 
						
							| 15 | 1 | nnzd |  |-  ( ph -> P e. ZZ ) | 
						
							| 16 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 17 | 15 16 | zsubcld |  |-  ( ph -> ( P - 1 ) e. ZZ ) | 
						
							| 18 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 19 | 2 18 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 20 |  | eluzfz1 |  |-  ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ph -> 0 e. ( 0 ... M ) ) | 
						
							| 22 | 4 21 | ffvelcdmd |  |-  ( ph -> ( C ` 0 ) e. ( 0 ... N ) ) | 
						
							| 23 | 22 | elfzelzd |  |-  ( ph -> ( C ` 0 ) e. ZZ ) | 
						
							| 24 | 17 23 | zsubcld |  |-  ( ph -> ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) | 
						
							| 26 | 23 | zred |  |-  ( ph -> ( C ` 0 ) e. RR ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( C ` 0 ) e. RR ) | 
						
							| 28 | 17 | zred |  |-  ( ph -> ( P - 1 ) e. RR ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( P - 1 ) e. RR ) | 
						
							| 30 |  | simpr |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> -. ( P - 1 ) < ( C ` 0 ) ) | 
						
							| 31 | 27 29 30 | nltled |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( C ` 0 ) <_ ( P - 1 ) ) | 
						
							| 32 | 7 | necomd |  |-  ( ph -> ( P - 1 ) =/= ( C ` 0 ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( P - 1 ) =/= ( C ` 0 ) ) | 
						
							| 34 | 27 29 31 33 | leneltd |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( C ` 0 ) < ( P - 1 ) ) | 
						
							| 35 | 27 29 | posdifd |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( C ` 0 ) < ( P - 1 ) <-> 0 < ( ( P - 1 ) - ( C ` 0 ) ) ) ) | 
						
							| 36 | 34 35 | mpbid |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> 0 < ( ( P - 1 ) - ( C ` 0 ) ) ) | 
						
							| 37 |  | elnnz |  |-  ( ( ( P - 1 ) - ( C ` 0 ) ) e. NN <-> ( ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ /\ 0 < ( ( P - 1 ) - ( C ` 0 ) ) ) ) | 
						
							| 38 | 25 36 37 | sylanbrc |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( P - 1 ) - ( C ` 0 ) ) e. NN ) | 
						
							| 39 | 38 | 0expd |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( 0 ^ ( ( P - 1 ) - ( C ` 0 ) ) ) = 0 ) | 
						
							| 40 | 14 39 | eqtrd |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) = 0 ) | 
						
							| 41 | 40 | oveq2d |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) = ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. 0 ) ) | 
						
							| 42 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 43 | 1 42 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 44 | 43 | faccld |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. NN ) | 
						
							| 45 | 44 | nncnd |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. CC ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ! ` ( P - 1 ) ) e. CC ) | 
						
							| 47 | 38 | nnnn0d |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( P - 1 ) - ( C ` 0 ) ) e. NN0 ) | 
						
							| 48 | 47 | faccld |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) e. NN ) | 
						
							| 49 | 48 | nncnd |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) e. CC ) | 
						
							| 50 | 48 | nnne0d |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) =/= 0 ) | 
						
							| 51 | 46 49 50 | divcld |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) e. CC ) | 
						
							| 52 | 51 | mul01d |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. 0 ) = 0 ) | 
						
							| 53 | 12 41 52 | 3eqtrd |  |-  ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = 0 ) | 
						
							| 54 | 10 53 | pm2.61dan |  |-  ( ph -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = 0 ) | 
						
							| 55 | 54 | oveq1d |  |-  ( ph -> ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) = ( 0 x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) ) | 
						
							| 56 | 6 21 | eqeltrd |  |-  ( ph -> J e. ( 0 ... M ) ) | 
						
							| 57 | 1 4 56 | etransclem7 |  |-  ( ph -> prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) e. ZZ ) | 
						
							| 58 | 57 | zcnd |  |-  ( ph -> prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) e. CC ) | 
						
							| 59 | 58 | mul02d |  |-  ( ph -> ( 0 x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) = 0 ) | 
						
							| 60 | 55 59 | eqtrd |  |-  ( ph -> ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) = 0 ) | 
						
							| 61 | 60 | oveq2d |  |-  ( ph -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) ) = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. 0 ) ) | 
						
							| 62 | 3 | faccld |  |-  ( ph -> ( ! ` N ) e. NN ) | 
						
							| 63 | 62 | nncnd |  |-  ( ph -> ( ! ` N ) e. CC ) | 
						
							| 64 |  | fzfid |  |-  ( ph -> ( 0 ... M ) e. Fin ) | 
						
							| 65 |  | fzssnn0 |  |-  ( 0 ... N ) C_ NN0 | 
						
							| 66 | 4 | ffvelcdmda |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( C ` j ) e. ( 0 ... N ) ) | 
						
							| 67 | 65 66 | sselid |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( C ` j ) e. NN0 ) | 
						
							| 68 | 67 | faccld |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ! ` ( C ` j ) ) e. NN ) | 
						
							| 69 | 68 | nncnd |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ! ` ( C ` j ) ) e. CC ) | 
						
							| 70 | 64 69 | fprodcl |  |-  ( ph -> prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) e. CC ) | 
						
							| 71 | 68 | nnne0d |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ! ` ( C ` j ) ) =/= 0 ) | 
						
							| 72 | 64 69 71 | fprodn0 |  |-  ( ph -> prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) =/= 0 ) | 
						
							| 73 | 63 70 72 | divcld |  |-  ( ph -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) e. CC ) | 
						
							| 74 | 73 | mul01d |  |-  ( ph -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. 0 ) = 0 ) | 
						
							| 75 | 8 61 74 | 3eqtrd |  |-  ( ph -> T = 0 ) |