| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem38.p |  |-  ( ph -> P e. NN ) | 
						
							| 2 |  | etransclem38.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 3 |  | etransclem38.f |  |-  F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | 
						
							| 4 |  | etransclem38.i |  |-  ( ph -> I e. NN0 ) | 
						
							| 5 |  | etransclem38.j |  |-  ( ph -> J e. ( 0 ... M ) ) | 
						
							| 6 |  | etransclem38.ij |  |-  ( ph -> -. ( I = ( P - 1 ) /\ J = 0 ) ) | 
						
							| 7 |  | etransclem38.c |  |-  C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) | 
						
							| 8 | 7 4 | etransclem16 |  |-  ( ph -> ( C ` I ) e. Fin ) | 
						
							| 9 | 1 | nnzd |  |-  ( ph -> P e. ZZ ) | 
						
							| 10 | 1 | adantr |  |-  ( ( ph /\ c e. ( C ` I ) ) -> P e. NN ) | 
						
							| 11 | 2 | adantr |  |-  ( ( ph /\ c e. ( C ` I ) ) -> M e. NN0 ) | 
						
							| 12 | 4 | adantr |  |-  ( ( ph /\ c e. ( C ` I ) ) -> I e. NN0 ) | 
						
							| 13 |  | etransclem11 |  |-  ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) = ( m e. NN0 |-> { e e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( e ` k ) = m } ) | 
						
							| 14 |  | etransclem11 |  |-  ( m e. NN0 |-> { e e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( e ` k ) = m } ) = ( n e. NN0 |-> { d e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( d ` j ) = n } ) | 
						
							| 15 | 7 13 14 | 3eqtri |  |-  C = ( n e. NN0 |-> { d e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( d ` j ) = n } ) | 
						
							| 16 |  | simpr |  |-  ( ( ph /\ c e. ( C ` I ) ) -> c e. ( C ` I ) ) | 
						
							| 17 | 5 | adantr |  |-  ( ( ph /\ c e. ( C ` I ) ) -> J e. ( 0 ... M ) ) | 
						
							| 18 |  | eqid |  |-  ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) = ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) | 
						
							| 19 | 10 11 12 15 16 17 18 | etransclem28 |  |-  ( ( ph /\ c e. ( C ` I ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) | 
						
							| 20 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 21 | 1 20 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 22 | 21 | faccld |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. NN ) | 
						
							| 23 | 22 | nnzd |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. ZZ ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ c e. ( C ` I ) ) -> ( ! ` ( P - 1 ) ) e. ZZ ) | 
						
							| 25 | 22 | nnne0d |  |-  ( ph -> ( ! ` ( P - 1 ) ) =/= 0 ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ c e. ( C ` I ) ) -> ( ! ` ( P - 1 ) ) =/= 0 ) | 
						
							| 27 | 5 | elfzelzd |  |-  ( ph -> J e. ZZ ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ph /\ c e. ( C ` I ) ) -> J e. ZZ ) | 
						
							| 29 | 10 11 12 28 15 16 | etransclem26 |  |-  ( ( ph /\ c e. ( C ` I ) ) -> ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) e. ZZ ) | 
						
							| 30 |  | dvdsval2 |  |-  ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ! ` ( P - 1 ) ) =/= 0 /\ ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) e. ZZ ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) <-> ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) | 
						
							| 31 | 24 26 29 30 | syl3anc |  |-  ( ( ph /\ c e. ( C ` I ) ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) <-> ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) | 
						
							| 32 | 19 31 | mpbid |  |-  ( ( ph /\ c e. ( C ` I ) ) -> ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) | 
						
							| 33 |  | pm3.22 |  |-  ( ( J = 0 /\ I = ( P - 1 ) ) -> ( I = ( P - 1 ) /\ J = 0 ) ) | 
						
							| 34 | 33 | adantll |  |-  ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I = ( P - 1 ) ) -> ( I = ( P - 1 ) /\ J = 0 ) ) | 
						
							| 35 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I = ( P - 1 ) ) -> -. ( I = ( P - 1 ) /\ J = 0 ) ) | 
						
							| 36 | 34 35 | pm2.65da |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) -> -. I = ( P - 1 ) ) | 
						
							| 37 | 36 | neqned |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) -> I =/= ( P - 1 ) ) | 
						
							| 38 | 1 | ad3antrrr |  |-  ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I =/= ( P - 1 ) ) -> P e. NN ) | 
						
							| 39 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I =/= ( P - 1 ) ) -> M e. NN0 ) | 
						
							| 40 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I =/= ( P - 1 ) ) -> I e. NN0 ) | 
						
							| 41 |  | simpr |  |-  ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I =/= ( P - 1 ) ) -> I =/= ( P - 1 ) ) | 
						
							| 42 |  | simplr |  |-  ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I =/= ( P - 1 ) ) -> J = 0 ) | 
						
							| 43 | 16 | ad2antrr |  |-  ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I =/= ( P - 1 ) ) -> c e. ( C ` I ) ) | 
						
							| 44 | 38 39 40 41 42 15 43 | etransclem24 |  |-  ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I =/= ( P - 1 ) ) -> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 45 | 37 44 | mpdan |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) -> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 46 | 1 | ad2antrr |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> P e. NN ) | 
						
							| 47 | 2 | ad2antrr |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> M e. NN0 ) | 
						
							| 48 | 4 | ad2antrr |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> I e. NN0 ) | 
						
							| 49 | 7 4 | etransclem12 |  |-  ( ph -> ( C ` I ) = { c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = I } ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ph /\ c e. ( C ` I ) ) -> ( C ` I ) = { c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = I } ) | 
						
							| 51 | 16 50 | eleqtrd |  |-  ( ( ph /\ c e. ( C ` I ) ) -> c e. { c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = I } ) | 
						
							| 52 |  | rabid |  |-  ( c e. { c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = I } <-> ( c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( c ` j ) = I ) ) | 
						
							| 53 | 51 52 | sylib |  |-  ( ( ph /\ c e. ( C ` I ) ) -> ( c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( c ` j ) = I ) ) | 
						
							| 54 | 53 | simpld |  |-  ( ( ph /\ c e. ( C ` I ) ) -> c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) ) | 
						
							| 55 |  | elmapi |  |-  ( c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) -> c : ( 0 ... M ) --> ( 0 ... I ) ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( ph /\ c e. ( C ` I ) ) -> c : ( 0 ... M ) --> ( 0 ... I ) ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> c : ( 0 ... M ) --> ( 0 ... I ) ) | 
						
							| 58 | 53 | simprd |  |-  ( ( ph /\ c e. ( C ` I ) ) -> sum_ j e. ( 0 ... M ) ( c ` j ) = I ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> sum_ j e. ( 0 ... M ) ( c ` j ) = I ) | 
						
							| 60 |  | 1zzd |  |-  ( ( ph /\ -. J = 0 ) -> 1 e. ZZ ) | 
						
							| 61 | 2 | nn0zd |  |-  ( ph -> M e. ZZ ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ph /\ -. J = 0 ) -> M e. ZZ ) | 
						
							| 63 | 27 | adantr |  |-  ( ( ph /\ -. J = 0 ) -> J e. ZZ ) | 
						
							| 64 |  | elfznn0 |  |-  ( J e. ( 0 ... M ) -> J e. NN0 ) | 
						
							| 65 | 5 64 | syl |  |-  ( ph -> J e. NN0 ) | 
						
							| 66 |  | neqne |  |-  ( -. J = 0 -> J =/= 0 ) | 
						
							| 67 | 65 66 | anim12i |  |-  ( ( ph /\ -. J = 0 ) -> ( J e. NN0 /\ J =/= 0 ) ) | 
						
							| 68 |  | elnnne0 |  |-  ( J e. NN <-> ( J e. NN0 /\ J =/= 0 ) ) | 
						
							| 69 | 67 68 | sylibr |  |-  ( ( ph /\ -. J = 0 ) -> J e. NN ) | 
						
							| 70 | 69 | nnge1d |  |-  ( ( ph /\ -. J = 0 ) -> 1 <_ J ) | 
						
							| 71 |  | elfzle2 |  |-  ( J e. ( 0 ... M ) -> J <_ M ) | 
						
							| 72 | 5 71 | syl |  |-  ( ph -> J <_ M ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ph /\ -. J = 0 ) -> J <_ M ) | 
						
							| 74 | 60 62 63 70 73 | elfzd |  |-  ( ( ph /\ -. J = 0 ) -> J e. ( 1 ... M ) ) | 
						
							| 75 | 74 | adantlr |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> J e. ( 1 ... M ) ) | 
						
							| 76 | 46 47 48 57 59 18 75 | etransclem25 |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( ! ` P ) || ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) | 
						
							| 77 | 1 | nncnd |  |-  ( ph -> P e. CC ) | 
						
							| 78 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 79 | 77 78 | npcand |  |-  ( ph -> ( ( P - 1 ) + 1 ) = P ) | 
						
							| 80 | 79 | eqcomd |  |-  ( ph -> P = ( ( P - 1 ) + 1 ) ) | 
						
							| 81 | 80 | fveq2d |  |-  ( ph -> ( ! ` P ) = ( ! ` ( ( P - 1 ) + 1 ) ) ) | 
						
							| 82 |  | facp1 |  |-  ( ( P - 1 ) e. NN0 -> ( ! ` ( ( P - 1 ) + 1 ) ) = ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) ) | 
						
							| 83 | 21 82 | syl |  |-  ( ph -> ( ! ` ( ( P - 1 ) + 1 ) ) = ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) ) | 
						
							| 84 | 79 | oveq2d |  |-  ( ph -> ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) = ( ( ! ` ( P - 1 ) ) x. P ) ) | 
						
							| 85 | 22 | nncnd |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. CC ) | 
						
							| 86 | 85 77 | mulcomd |  |-  ( ph -> ( ( ! ` ( P - 1 ) ) x. P ) = ( P x. ( ! ` ( P - 1 ) ) ) ) | 
						
							| 87 | 84 86 | eqtrd |  |-  ( ph -> ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) = ( P x. ( ! ` ( P - 1 ) ) ) ) | 
						
							| 88 | 81 83 87 | 3eqtrrd |  |-  ( ph -> ( P x. ( ! ` ( P - 1 ) ) ) = ( ! ` P ) ) | 
						
							| 89 | 88 | ad2antrr |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( P x. ( ! ` ( P - 1 ) ) ) = ( ! ` P ) ) | 
						
							| 90 | 29 | zcnd |  |-  ( ( ph /\ c e. ( C ` I ) ) -> ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) e. CC ) | 
						
							| 91 | 85 | adantr |  |-  ( ( ph /\ c e. ( C ` I ) ) -> ( ! ` ( P - 1 ) ) e. CC ) | 
						
							| 92 | 90 91 26 | divcan1d |  |-  ( ( ph /\ c e. ( C ` I ) ) -> ( ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) x. ( ! ` ( P - 1 ) ) ) = ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) | 
						
							| 93 | 92 | adantr |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) x. ( ! ` ( P - 1 ) ) ) = ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) | 
						
							| 94 | 76 89 93 | 3brtr4d |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( P x. ( ! ` ( P - 1 ) ) ) || ( ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) x. ( ! ` ( P - 1 ) ) ) ) | 
						
							| 95 | 9 | ad2antrr |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> P e. ZZ ) | 
						
							| 96 | 32 | adantr |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) | 
						
							| 97 | 23 | ad2antrr |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( ! ` ( P - 1 ) ) e. ZZ ) | 
						
							| 98 | 25 | ad2antrr |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( ! ` ( P - 1 ) ) =/= 0 ) | 
						
							| 99 |  | dvdsmulcr |  |-  ( ( P e. ZZ /\ ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ /\ ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ! ` ( P - 1 ) ) =/= 0 ) ) -> ( ( P x. ( ! ` ( P - 1 ) ) ) || ( ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) x. ( ! ` ( P - 1 ) ) ) <-> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 100 | 95 96 97 98 99 | syl112anc |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( ( P x. ( ! ` ( P - 1 ) ) ) || ( ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) x. ( ! ` ( P - 1 ) ) ) <-> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) ) | 
						
							| 101 | 94 100 | mpbid |  |-  ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 102 | 45 101 | pm2.61dan |  |-  ( ( ph /\ c e. ( C ` I ) ) -> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 103 | 8 9 32 102 | fsumdvds |  |-  ( ph -> P || sum_ c e. ( C ` I ) ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 104 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 105 | 104 | a1i |  |-  ( ph -> RR e. { RR , CC } ) | 
						
							| 106 |  | reopn |  |-  RR e. ( topGen ` ran (,) ) | 
						
							| 107 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 108 | 106 107 | eleqtri |  |-  RR e. ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 109 | 108 | a1i |  |-  ( ph -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 110 |  | etransclem5 |  |-  ( k e. ( 0 ... M ) |-> ( y e. RR |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. RR |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 111 |  | fzssre |  |-  ( 0 ... M ) C_ RR | 
						
							| 112 | 111 5 | sselid |  |-  ( ph -> J e. RR ) | 
						
							| 113 | 105 109 1 2 3 4 110 7 112 | etransclem31 |  |-  ( ph -> ( ( ( RR Dn F ) ` I ) ` J ) = sum_ c e. ( C ` I ) ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) | 
						
							| 114 | 113 | oveq1d |  |-  ( ph -> ( ( ( ( RR Dn F ) ` I ) ` J ) / ( ! ` ( P - 1 ) ) ) = ( sum_ c e. ( C ` I ) ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 115 | 8 85 90 25 | fsumdivc |  |-  ( ph -> ( sum_ c e. ( C ` I ) ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) = sum_ c e. ( C ` I ) ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 116 | 114 115 | eqtrd |  |-  ( ph -> ( ( ( ( RR Dn F ) ` I ) ` J ) / ( ! ` ( P - 1 ) ) ) = sum_ c e. ( C ` I ) ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) | 
						
							| 117 | 103 116 | breqtrrd |  |-  ( ph -> P || ( ( ( ( RR Dn F ) ` I ) ` J ) / ( ! ` ( P - 1 ) ) ) ) |