| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem39.p |  |-  ( ph -> P e. NN ) | 
						
							| 2 |  | etransclem39.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 3 |  | etransclem39.f |  |-  F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | 
						
							| 4 |  | etransclem39.g |  |-  G = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) | 
						
							| 5 |  | fzfid |  |-  ( ( ph /\ x e. RR ) -> ( 0 ... R ) e. Fin ) | 
						
							| 6 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 7 | 6 | a1i |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> RR e. { RR , CC } ) | 
						
							| 8 |  | reopn |  |-  RR e. ( topGen ` ran (,) ) | 
						
							| 9 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 10 | 8 9 | eleqtri |  |-  RR e. ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 11 | 10 | a1i |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 12 | 1 | adantr |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> P e. NN ) | 
						
							| 13 | 2 | adantr |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> M e. NN0 ) | 
						
							| 14 |  | elfznn0 |  |-  ( i e. ( 0 ... R ) -> i e. NN0 ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> i e. NN0 ) | 
						
							| 16 | 7 11 12 13 3 15 | etransclem33 |  |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) | 
						
							| 17 | 16 | adantlr |  |-  ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) | 
						
							| 18 |  | simplr |  |-  ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> x e. RR ) | 
						
							| 19 | 17 18 | ffvelcdmd |  |-  ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) | 
						
							| 20 | 5 19 | fsumcl |  |-  ( ( ph /\ x e. RR ) -> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) | 
						
							| 21 | 20 4 | fmptd |  |-  ( ph -> G : RR --> CC ) |