Metamath Proof Explorer


Theorem etransclem40

Description: The N -th derivative of F is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem40.s
|- ( ph -> S e. { RR , CC } )
etransclem40.a
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) )
etransclem40.p
|- ( ph -> P e. NN )
etransclem40.m
|- ( ph -> M e. NN0 )
etransclem40.f
|- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) )
etransclem40.6
|- ( ph -> N e. NN0 )
Assertion etransclem40
|- ( ph -> ( ( S Dn F ) ` N ) e. ( X -cn-> CC ) )

Proof

Step Hyp Ref Expression
1 etransclem40.s
 |-  ( ph -> S e. { RR , CC } )
2 etransclem40.a
 |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) )
3 etransclem40.p
 |-  ( ph -> P e. NN )
4 etransclem40.m
 |-  ( ph -> M e. NN0 )
5 etransclem40.f
 |-  F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) )
6 etransclem40.6
 |-  ( ph -> N e. NN0 )
7 etransclem5
 |-  ( j e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( k e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) )
8 etransclem11
 |-  ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( d ` j ) = m } ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( c ` k ) = n } )
9 1 2 3 4 5 6 7 8 etransclem34
 |-  ( ph -> ( ( S Dn F ) ` N ) e. ( X -cn-> CC ) )